Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
杨迪
NiuTrans.Tensor
Commits
18a08a65
Commit
18a08a65
authored
Feb 18, 2020
by
xuchen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
optimize xbackward implementation for supporting efficient propagate and gradient accumulation
parent
0e585782
隐藏空白字符变更
内嵌
并排
正在显示
9 个修改的文件
包含
773 行增加
和
748 行删除
+773
-748
source/network/XBackwardFunc.cpp
+30
-21
source/network/XBackwardLoss.cpp
+32
-103
source/network/XBackwardMath.cpp
+505
-442
source/network/XBackwardShape.cpp
+183
-158
source/network/XNet.cpp
+0
-1
source/tensor/core/arithmetic/MatrixMul.cpp
+1
-1
source/tensor/core/math/Compare.cpp
+2
-2
source/tensor/core/shape/Split.h
+17
-17
source/tensor/core/shape/Stack.cpp
+3
-3
没有找到文件。
source/network/XBackwardFunc.cpp
查看文件 @
18a08a65
...
...
@@ -40,28 +40,37 @@ void XFuncGrad::MakeGrad(XTensor * node, bool isEfficient)
XTensor
*
input
=
income
.
tails
[
0
];
XTensor
*
output
=
node
;
XNoder
::
MakeGrad
(
input
);
if
(
!
isEfficient
||
input
->
isGrad
)
{
XNoder
::
MakeGrad
(
input
);
if
(
operID
==
FUNC_HARDTANH
)
_HardTanHBackward
(
output
,
input
,
output
->
grad
,
input
->
grad
);
else
if
(
operID
==
FUNC_IDENTITY
)
_IdentityBackward
(
output
,
input
,
output
->
grad
,
input
->
grad
);
else
if
(
operID
==
FUNC_LOGSOFTMAX
){
int
leadDim
=
income
.
GetParamInt
(
0
);
CheckNTErrors
(
leadDim
>=
0
&&
leadDim
<
input
->
order
,
"wrong leading dimension in logsoftmax!"
);
_LogSoftmaxBackward
(
NULL
,
output
,
input
,
output
->
grad
,
input
->
grad
,
NULL
,
leadDim
,
NOLOSS
);
}
else
if
(
operID
==
FUNC_RECTIFY
)
_RectifyBackward
(
output
,
input
,
output
->
grad
,
input
->
grad
);
else
if
(
operID
==
FUNC_SIGMOID
)
_SigmoidBackward
(
output
,
input
,
output
->
grad
,
input
->
grad
);
else
if
(
operID
==
FUNC_SOFTMAX
){
int
leadDim
=
income
.
GetParamInt
(
0
);
CheckNTErrors
(
leadDim
>=
0
&&
leadDim
<
input
->
order
,
"wrong leading dimension in softmax!"
);
_SoftmaxBackward
(
NULL
,
output
,
input
,
output
->
grad
,
input
->
grad
,
NULL
,
leadDim
,
NOLOSS
);
}
else
{
ShowNTErrors
(
"Wrong activation function type!"
);
XTensor
*
dedx
=
input
->
grad
;
XTensor
*
dedy
=
output
->
grad
;
XTensor
*
tmp
=
NewTensorBufV2
(
output
,
output
->
devID
,
output
->
mem
);
if
(
operID
==
FUNC_HARDTANH
)
_HardTanHBackward
(
output
,
input
,
dedy
,
tmp
);
else
if
(
operID
==
FUNC_IDENTITY
)
_IdentityBackward
(
output
,
input
,
dedy
,
tmp
);
else
if
(
operID
==
FUNC_LOGSOFTMAX
)
{
int
leadDim
=
income
.
GetParamInt
(
0
);
CheckNTErrors
(
leadDim
>=
0
&&
leadDim
<
input
->
order
,
"wrong leading dimension in logsoftmax!"
);
_LogSoftmaxBackward
(
NULL
,
output
,
input
,
dedy
,
tmp
,
NULL
,
leadDim
,
NOLOSS
);
}
else
if
(
operID
==
FUNC_RECTIFY
)
_RectifyBackward
(
output
,
input
,
dedy
,
tmp
);
else
if
(
operID
==
FUNC_SIGMOID
)
_SigmoidBackward
(
output
,
input
,
dedy
,
tmp
);
else
if
(
operID
==
FUNC_SOFTMAX
)
{
int
leadDim
=
income
.
GetParamInt
(
0
);
CheckNTErrors
(
leadDim
>=
0
&&
leadDim
<
input
->
order
,
"wrong leading dimension in softmax!"
);
_SoftmaxBackward
(
NULL
,
output
,
input
,
dedy
,
tmp
,
NULL
,
leadDim
,
NOLOSS
);
}
else
{
ShowNTErrors
(
"Wrong activation function type!"
);
}
_SumMe
(
dedx
,
tmp
);
DelTensorBuf
(
tmp
);
}
node
->
visitMark
=
NODE_FINISHED
;
...
...
source/network/XBackwardLoss.cpp
查看文件 @
18a08a65
...
...
@@ -48,33 +48,38 @@ void XLossGrad::MakeGrad(XTensor * node, bool isEfficient)
XTensor
*
padding
=
NULL
;
int
leadingDim
;
XNoder
::
MakeGrad
(
output
);
XTensor
*
dedy
=
output
->
grad
;
if
(
income
.
tailNum
==
1
)
{
if
(
dedy
->
dataType
==
X_FLOAT
)
_SetDataFixedFloat
(
dedy
,
1.0
F
);
else
if
(
dedy
->
dataType
==
X_DOUBLE
)
_SetDataFixedDouble
(
dedy
,
1.0
);
else
if
(
dedy
->
dataType
==
X_INT
)
_SetDataFixedInt
(
dedy
,
1
);
else
ShowNTErrors
(
"TODO"
);
return
;
}
gold
=
income
.
tails
[
1
];
if
(
operID
==
LOSS_CROSSENTROPY
)
{
if
(
income
.
tailNum
==
3
)
padding
=
income
.
tails
[
2
];
leadingDim
=
income
.
GetParamInt
(
0
);
CheckNTErrors
(
leadingDim
>=
0
&&
leadingDim
<
output
->
order
,
"wrong leading dimension in logsoftmax!"
);
_CrossEntropyBackward
(
dedy
,
output
,
gold
,
weight
,
padding
,
leadingDim
);
}
else
{
ShowNTErrors
(
"Wrong activation function type!"
);
if
(
!
isEfficient
||
output
->
isGrad
)
{
XNoder
::
MakeGrad
(
output
);
XTensor
*
dedy
=
output
->
grad
;
if
(
income
.
tailNum
==
1
)
{
if
(
dedy
->
dataType
==
X_FLOAT
)
_SetDataFixedFloat
(
dedy
,
1.0
F
);
else
if
(
dedy
->
dataType
==
X_DOUBLE
)
_SetDataFixedDouble
(
dedy
,
1.0
);
else
if
(
dedy
->
dataType
==
X_INT
)
_SetDataFixedInt
(
dedy
,
1
);
else
ShowNTErrors
(
"TODO"
);
return
;
}
gold
=
income
.
tails
[
1
];
XTensor
*
tmp
=
NewTensorBufV2
(
output
,
output
->
devID
,
output
->
mem
);
if
(
operID
==
LOSS_CROSSENTROPY
)
{
if
(
income
.
tailNum
==
3
)
padding
=
income
.
tails
[
2
];
leadingDim
=
income
.
GetParamInt
(
0
);
CheckNTErrors
(
leadingDim
>=
0
&&
leadingDim
<
output
->
order
,
"wrong leading dimension in logsoftmax!"
);
_CrossEntropyBackward
(
tmp
,
output
,
gold
,
weight
,
padding
,
leadingDim
);
_SumMe
(
dedy
,
tmp
);
}
else
{
ShowNTErrors
(
"Wrong activation function type!"
);
}
DelTensorBuf
(
tmp
);
}
node
->
visitMark
=
NODE_FINISHED
;
...
...
@@ -87,79 +92,4 @@ bool XLossGrad::IsLossOP(XTensor * node)
return
(
income
.
typeID
&
LOSS_BASE
)
!=
0
;
}
/*
compute dE/dx for a given function y = f(x)
>> gold - gold standard to measure error (or loss)
>> y - output of the function
>> x - input of the function
>> dedy - dE/dy
>> dedx - dE/dx
>> funcID - id of the function f
>> params - parameters of the function
>> lossName - name of the loss, e.g., cross entropy
*/
//void XLossGrad::Compute(XTensor * gold, XTensor * y, XTensor * x,
// XTensor * dedy, XTensor * dedx, XTensor * padding,
// int funcID, void * params,
// LOSS_FUNCTION_NAME lossName)
//{
// CheckNTErrors(gold && y && x, "Empty input tensors!");
// CheckNTErrors(dedx, "Empty gradient tensors!");
// CheckNTErrors((funcID & FUNCTION_BASE) != 0, "Illegal function id");
//
// if(funcID == FUNC_HARDTANH){
// _HardTanHBackward(gold, y, x, dedy, dedx, lossName);
// }
// else if(funcID == FUNC_IDENTITY){
// _IdentityBackward(gold, y, x, dedy, dedx, lossName);
// }
// else if(funcID == FUNC_LOGSOFTMAX){
// int leadDim = *(int*)params;
// _LogSoftmaxBackward(gold, y, x, dedy, dedx, padding, leadDim, lossName);
// }
// else if(funcID == FUNC_RECTIFY){
// _RectifyBackward(gold, y, x, dedy, dedx, lossName);
// }
// else if(funcID == FUNC_SIGMOID){
// _SigmoidBackward(gold, y, x, dedy, dedx, lossName);
// }else if(funcID == FUNC_SOFTMAX){
// int leadDim = *(int*)params;
// _SoftmaxBackward(gold, y, x, dedy, dedx, padding, leadDim, lossName);
// }
// else{
// ShowNTErrors("wrong function found when call the backward process!");
// }
//
//}
/*
compute dE/dy for variable y and error(loss) function E
>> gold - gold standard to measure error (or loss)
>> y - output of the function
>> dedy - dE/dy
>> lossName - name of the loss, e.g., cross entropy
*/
//void XLossGrad::Compute(XTensor * gold, XTensor * y,
// XTensor * dedy, XTensor * padding,
// LOSS_FUNCTION_NAME lossName)
//{
// if(gold == NULL){
// if(dedy->dataType == X_FLOAT)
// _SetDataFixedFloat(dedy, 1.0F);
// else if(dedy->dataType == X_DOUBLE)
// _SetDataFixedDouble(dedy, 1.0);
// else if(dedy->dataType == X_INT)
// _SetDataFixedInt(dedy, 1);
// else{
// ShowNTErrors("TODO");
// }
// return;
// }
//
// //_LossBackward(dedy, gold, y, lossName);
// if(lossName == CROSSENTROPY)
// _CrossEntropyBackward(dedy, y, gold, NULL, padding);
//
//}
}
\ No newline at end of file
source/network/XBackwardMath.cpp
查看文件 @
18a08a65
...
...
@@ -30,80 +30,80 @@ namespace nts{
/* compute dE/dx of a node */
void
XMathGrad
::
MakeGrad
(
XTensor
*
node
,
bool
isEfficient
)
{
if
(
!
isEfficient
)
{
if
(
!
isEfficient
)
{
CheckNTErrors
(
node
->
grad
!=
NULL
,
"No gradient found!"
);
}
else
{
else
{
CheckNTErrors
(
!
node
->
isGrad
||
node
->
grad
!=
NULL
,
"No gradient found!"
);
}
XLink
&
income
=
node
->
income
;
int
operID
=
income
.
typeID
;
if
(
operID
==
MATH_ABSOLUTE
)
if
(
operID
==
MATH_ABSOLUTE
)
GradAbsolute
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_COS
)
else
if
(
operID
==
MATH_COS
)
GradCos
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_EXP
)
else
if
(
operID
==
MATH_EXP
)
GradExp
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_LOG
)
else
if
(
operID
==
MATH_LOG
)
GradLog
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_ROUND
)
else
if
(
operID
==
MATH_ROUND
)
GradRound
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_SIGN
)
else
if
(
operID
==
MATH_SIGN
)
GradSign
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_SIN
)
else
if
(
operID
==
MATH_SIN
)
GradSin
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_TAN
)
else
if
(
operID
==
MATH_TAN
)
GradTan
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_CLIP
)
else
if
(
operID
==
MATH_CLIP
)
GradClip
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_DIV
)
else
if
(
operID
==
MATH_DIV
)
GradDiv
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_DIVDIM
)
else
if
(
operID
==
MATH_DIVDIM
)
GradDivDim
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_MATRIXMUL
)
else
if
(
operID
==
MATH_MATRIXMUL
)
GradMatrixMul
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_MATRIXMULBATCHED
)
else
if
(
operID
==
MATH_MATRIXMULBATCHED
)
GradMatrixMulBatched
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_MULTIPLY
)
else
if
(
operID
==
MATH_MULTIPLY
)
GradMultiply
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_MULTIPLYDIM
)
else
if
(
operID
==
MATH_MULTIPLYDIM
)
GradMultiplyDim
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_MULTIPLYBROADCAST
)
GradMultiplyBroadcast
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_NEGATE
)
else
if
(
operID
==
MATH_NEGATE
)
GradNegate
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_NORMALIZE
)
else
if
(
operID
==
MATH_NORMALIZE
)
GradNormalize
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_POWER
)
else
if
(
operID
==
MATH_POWER
)
GradPower
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_SCALEANDSHIFT
)
else
if
(
operID
==
MATH_SCALEANDSHIFT
)
GradScaleAndShift
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_SCALE
)
else
if
(
operID
==
MATH_SCALE
)
GradScale
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_DESCALE
)
else
if
(
operID
==
MATH_DESCALE
)
GradDescale
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_SHIFT
)
else
if
(
operID
==
MATH_SHIFT
)
GradShift
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_SUB
)
else
if
(
operID
==
MATH_SUB
)
GradSub
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_SUBDIM
)
else
if
(
operID
==
MATH_SUBDIM
)
GradSubDim
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_SUM
)
else
if
(
operID
==
MATH_SUM
)
GradSum
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_SUMDIM
)
else
if
(
operID
==
MATH_SUMDIM
)
GradSumDim
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_SUMBROADCAST
)
else
if
(
operID
==
MATH_SUMBROADCAST
)
GradSumBroadcast
(
node
,
isEfficient
);
else
if
(
operID
==
REDUCE_REDUCEMEAN
)
else
if
(
operID
==
REDUCE_REDUCEMEAN
)
GradReduceMean
(
node
,
isEfficient
);
else
if
(
operID
==
REDUCE_REDUCESUM
)
else
if
(
operID
==
REDUCE_REDUCESUM
)
GradReduceSum
(
node
,
isEfficient
);
else
if
(
operID
==
REDUCE_REDUCESUMSQUARED
)
else
if
(
operID
==
REDUCE_REDUCESUMSQUARED
)
GradReduceSumSquared
(
node
,
isEfficient
);
else
if
(
operID
==
REDUCE_REDUCEVARIANCE
)
else
if
(
operID
==
REDUCE_REDUCEVARIANCE
)
GradReduceVariance
(
node
,
isEfficient
);
else
if
(
operID
==
MATH_MULANDSHIFT
)
GradMulAndShift
(
node
,
isEfficient
);
...
...
@@ -136,14 +136,17 @@ void XMathGrad::GradAbsolute(XTensor * node, bool isEfficient)
CheckNTErrors
(
income
.
tailNum
==
1
,
"Wrong input tensor number for ABSOLUTE!"
);
XTensor
*
a
=
income
.
tails
[
0
];
XTensor
*
b
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
XNoder
::
MakeGrad
(
a
);
/* dE/da = dE/dc * sign(a) */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Sign
(
a
,
b
);
_Multiply
(
node
->
grad
,
b
,
a
->
grad
,
1.0
F
);
XTensor
*
tmp
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
_Sign
(
a
,
tmp
);
_Multiply
(
node
->
grad
,
tmp
,
a
->
grad
,
1.0
F
);
DelTensorBuf
(
b
);
DelTensorBuf
(
tmp
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -164,15 +167,18 @@ void XMathGrad::GradCos(XTensor * node, bool isEfficient)
CheckNTErrors
(
income
.
tailNum
==
1
,
"Wrong input tensor number for COS!"
);
XTensor
*
a
=
income
.
tails
[
0
];
XTensor
*
b
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
XNoder
::
MakeGrad
(
a
);
/* dE/da = dE/dc * -sin(a) */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Sin
(
a
,
b
);
_ScaleAndShiftMe
(
b
,
-
1.0
F
);
_Multiply
(
node
->
grad
,
b
,
a
->
grad
,
1.0
F
);
XTensor
*
tmp
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
_Sin
(
a
,
tmp
);
_NegateMe
(
tmp
);
_Multiply
(
node
->
grad
,
tmp
,
a
->
grad
,
1.0
F
);
DelTensorBuf
(
b
);
DelTensorBuf
(
tmp
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -193,14 +199,17 @@ void XMathGrad::GradExp(XTensor * node, bool isEfficient)
CheckNTErrors
(
income
.
tailNum
==
1
,
"Wrong input tensor number for EXP!"
);
XTensor
*
a
=
income
.
tails
[
0
];
XTensor
*
b
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
XNoder
::
MakeGrad
(
a
);
/* dE/da = dE/dc * exp(a) */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Exp
(
a
,
b
);
_Multiply
(
node
->
grad
,
b
,
a
->
grad
,
1.0
F
);
XTensor
*
tmp
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
_Exp
(
a
,
tmp
);
_Multiply
(
node
->
grad
,
tmp
,
a
->
grad
,
1.0
F
);
DelTensorBuf
(
b
);
DelTensorBuf
(
tmp
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -222,9 +231,11 @@ void XMathGrad::GradLog(XTensor * node, bool isEfficient)
XTensor
*
a
=
income
.
tails
[
0
];
XNoder
::
MakeGrad
(
a
);
_Div
(
node
->
grad
,
a
,
a
->
grad
,
1.0
F
);
/* dE/da = dE/dc * 1/a */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Div
(
node
->
grad
,
a
,
a
->
grad
,
1.0
F
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -244,8 +255,12 @@ void XMathGrad::GradRound(XTensor * node, bool isEfficient)
XLink
&
income
=
node
->
income
;
CheckNTErrors
(
income
.
tailNum
==
1
,
"Wrong input tensor number for ROUND!"
);
// we do nothing here
// TODO: set grad = 0 if the node is the only child
XTensor
*
a
=
income
.
tails
[
0
];
/* dE/da = 0, we do nothing here */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -265,8 +280,12 @@ void XMathGrad::GradSign(XTensor * node, bool isEfficient)
XLink
&
income
=
node
->
income
;
CheckNTErrors
(
income
.
tailNum
==
1
,
"Wrong input tensor number for SIGN!"
);
// we do nothing here
// TODO: set grad = 0 if the node is the only child
XTensor
*
a
=
income
.
tails
[
0
];
/* dE/da = 0, we do nothing here */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -287,14 +306,17 @@ void XMathGrad::GradSin(XTensor * node, bool isEfficient)
CheckNTErrors
(
income
.
tailNum
==
1
,
"Wrong input tensor number for SIN!"
);
XTensor
*
a
=
income
.
tails
[
0
];
XTensor
*
b
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
XNoder
::
MakeGrad
(
a
);
/* dE/da = dE/dc * cos(a) */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Cos
(
a
,
b
);
_Multiply
(
node
->
grad
,
b
,
a
->
grad
,
1.0
F
);
XTensor
*
tmp
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
_Cos
(
a
,
tmp
);
_Multiply
(
node
->
grad
,
tmp
,
a
->
grad
,
1.0
F
);
DelTensorBuf
(
b
);
DelTensorBuf
(
tmp
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -315,15 +337,18 @@ void XMathGrad::GradTan(XTensor * node, bool isEfficient)
CheckNTErrors
(
income
.
tailNum
==
1
,
"Wrong input tensor number for TAN!"
);
XTensor
*
a
=
income
.
tails
[
0
];
XTensor
*
b
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
XTensor
*
tmp
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
XNoder
::
MakeGrad
(
a
);
_Cos
(
a
,
b
);
_PowerMe
(
b
,
-
2.0
F
);
_Multiply
(
node
->
grad
,
b
,
a
->
grad
,
1.0
F
);
/* dE/da = dE/dc * 1/(cos(a))^2
= dE/dc * (cos(a))^-2 */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Cos
(
a
,
tmp
);
_PowerMe
(
tmp
,
-
2.0
F
);
_Multiply
(
node
->
grad
,
tmp
,
a
->
grad
,
1.0
F
);
DelTensorBuf
(
b
);
DelTensorBuf
(
tmp
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -343,17 +368,21 @@ void XMathGrad::GradClip(XTensor * node, bool isEfficient)
CheckNTErrors
(
income
.
tailNum
==
1
,
"Wrong input tensor number for CLIP!"
);
XTensor
*
a
=
income
.
tails
[
0
];
XTensor
*
b
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
DTYPE
lower
=
income
.
GetParam
(
0
);
DTYPE
upper
=
income
.
GetParam
(
1
);
XNoder
::
MakeGrad
(
a
);
/* dE/da = 1 lower < a < upper
= 0 otherwise */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_ClipBackward
(
node
,
a
,
node
->
grad
,
a
->
grad
,
lower
,
upper
);
_Sum
(
a
->
grad
,
b
,
a
->
grad
);
XTensor
*
tmp
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
_ClipBackward
(
node
,
a
,
node
->
grad
,
tmp
,
lower
,
upper
);
_SumMe
(
a
->
grad
,
tmp
);
DelTensorBuf
(
b
);
DelTensorBuf
(
tmp
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -376,21 +405,26 @@ void XMathGrad::GradDiv(XTensor * node, bool isEfficient)
XTensor
*
a
=
income
.
tails
[
0
];
XTensor
*
b
=
income
.
tails
[
1
];
XTensor
*
ab2
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
XNoder
::
MakeGrad
(
a
);
XNoder
::
MakeGrad
(
b
);
CheckNTErrors
(
_IsSameShaped
(
a
,
b
),
"Wrong sized input tensors!"
);
/* dE/da = dE/dc / b */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Div
(
node
->
grad
,
b
,
a
->
grad
,
1.0
F
);
}
_Div
(
node
->
grad
,
b
,
a
->
grad
,
1.0
F
);
_Power
(
b
,
ab2
,
-
2.0
F
);
_Multiply
(
a
,
ab2
,
ab2
);
_ScaleAndShiftMe
(
ab2
,
-
1.0
F
);
_Multiply
(
node
->
grad
,
ab2
,
b
->
grad
,
1.0
F
);
/* dE/db = dE/dc * a/(-b^2)
= dE/dc * a * (-b^-2) */
if
(
!
isEfficient
||
b
->
isGrad
)
{
XNoder
::
MakeGrad
(
b
);
XTensor
*
tmp
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
_Power
(
b
,
tmp
,
-
2.0
F
);
_NegateMe
(
tmp
);
_MultiplyMe
(
tmp
,
a
);
_Multiply
(
node
->
grad
,
tmp
,
b
->
grad
,
1.0
F
);
DelTensorBuf
(
ab2
);
DelTensorBuf
(
tmp
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -414,87 +448,82 @@ void XMathGrad::GradDivDim(XTensor * node, bool isEfficient)
XTensor
*
a
=
income
.
tails
[
0
];
XTensor
*
b
=
income
.
tails
[
1
];
int
n
=
income
.
GetParamInt
(
0
);
XNoder
::
MakeGrad
(
a
);
XNoder
::
MakeGrad
(
b
);
/* dE/da = dE/dc * (1/b) */
_DivDim
(
node
->
grad
,
b
,
a
->
grad
,
n
,
1.0
);
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_DivDim
(
node
->
grad
,
b
,
a
->
grad
,
n
,
1.0
);
}
/* dE/db = dE/dc * dc/db */
int
order
=
a
->
order
;
int
dimSize
[
MAX_TENSOR_DIM_NUM
];
memcpy
(
dimSize
,
a
->
dimSize
,
sizeof
(
int
)
*
a
->
order
);
/* dE/db = dE/dc * dc/db
= (dE/dc * (-a/b^2)).reduce(0,...,n-1,n+1,...) */
if
(
!
isEfficient
||
b
->
isGrad
)
{
XNoder
::
MakeGrad
(
b
);
int
order
=
a
->
order
;
int
dimSize
[
MAX_TENSOR_DIM_NUM
];
memcpy
(
dimSize
,
a
->
dimSize
,
sizeof
(
int
)
*
a
->
order
);
XTensor
*
aTMP1
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
XTensor
*
aTMP2
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
XTensor
*
bTMP
=
NewTensorBufV2
(
b
,
b
->
devID
,
b
->
mem
);
XTensor
*
interGradTMP
=
NewTensorBufV2
(
node
->
grad
,
node
->
devID
,
node
->
mem
);
XTensor
*
aTMP1
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
XTensor
*
aTMP2
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
XTensor
*
bTMP
=
NewTensorBufV2
(
b
,
b
->
devID
,
b
->
mem
);
XTensor
*
interGradTMP
=
NewTensorBufV2
(
node
->
grad
,
node
->
devID
,
node
->
mem
);
_Negate
(
a
,
aTMP1
);
_Power
(
b
,
bTMP
,
-
2.0
F
);
_MultiplyDim
(
aTMP1
,
bTMP
,
aTMP2
,
n
);
_Negate
(
a
,
aTMP1
);
_Power
(
b
,
bTMP
,
-
2.0
F
);
_MultiplyDim
(
aTMP1
,
bTMP
,
aTMP2
,
n
);
_Multiply
(
node
->
grad
,
aTMP2
,
interGradTMP
);
_Multiply
(
node
->
grad
,
aTMP2
,
interGradTMP
);
if
(
n
==
order
-
1
)
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
a
->
unitNum
/
dimSize
[
order
-
1
];
reshapedSize
[
1
]
=
dimSize
[
order
-
1
];
if
(
n
==
order
-
1
)
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
a
->
unitNum
/
dimSize
[
order
-
1
];
reshapedSize
[
1
]
=
dimSize
[
order
-
1
];
/* we reshape dE/dc * a to a matrix whose column number is equal to the
size of b. Then we can reduce the matrix into a row vector. */
interGradTMP
->
Reshape
(
2
,
reshapedSize
);
/* we reshape dE/dc * a to a matrix whose column number is equal to the
size of b. Then we can reduce the matrix into a row vector. */
interGradTMP
->
Reshape
(
2
,
reshapedSize
);
//if(b->outgo.tailNum > 1){
XTensor
*
bGradTMP
=
NewTensorBufV2
(
b
->
grad
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
interGradTMP
,
bGradTMP
,
0
);
_Sum
(
b
->
grad
,
bGradTMP
,
b
->
grad
);
_SumMe
(
b
->
grad
,
bGradTMP
);
DelTensorBuf
(
bGradTMP
);
/*}
else{
_ReduceSum(interGradTMP, b->grad, 0);
}*/
}
else
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
1
;
reshapedSize
[
1
]
=
dimSize
[
n
];
reshapedSize
[
2
]
=
1
;
for
(
int
i
=
0
;
i
<
order
;
i
++
){
if
(
i
<
n
)
reshapedSize
[
0
]
*=
dimSize
[
i
];
}
else
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
1
;
reshapedSize
[
1
]
=
dimSize
[
n
];
reshapedSize
[
2
]
=
1
;
reshapedSize
[
2
]
=
a
->
unitNum
/
(
reshapedSize
[
0
]
*
reshapedSize
[
1
]);
for
(
int
i
=
0
;
i
<
order
;
i
++
)
{
if
(
i
<
n
)
reshapedSize
[
0
]
*=
dimSize
[
i
];
}
/* we reshape dE/dc to a 3D tensor of size (x, y, z) where y = |b|.
Then reduce along with z and x to obtain dE/db. */
interGradTMP
->
Reshape
(
3
,
reshapedSize
);
reshapedSize
[
2
]
=
a
->
unitNum
/
(
reshapedSize
[
0
]
*
reshapedSize
[
1
]);
XTensor
*
interGrad
=
NewTensorBufV2
(
2
,
reshapedSize
,
b
->
dataType
,
b
->
denseRatio
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
interGradTMP
,
interGrad
,
2
);
/* we reshape dE/dc to a 3D tensor of size (x, y, z) where y = |b|.
Then reduce along with z and x to obtain dE/db. */
interGradTMP
->
Reshape
(
3
,
reshapedSize
);
//if(b->outgo.tailNum > 1){
XTensor
*
bGradTMP2
=
NewTensorBufV2
(
b
->
grad
,
b
->
devID
,
b
->
mem
);
XTensor
*
interGrad
=
NewTensorBufV2
(
2
,
reshapedSize
,
b
->
dataType
,
b
->
denseRatio
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
interGradTMP
,
interGrad
,
2
);
XTensor
*
bGradTMP2
=
NewTensorBufV2
(
b
->
grad
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
interGrad
,
bGradTMP2
,
0
);
_Sum
(
b
->
grad
,
bGradTMP2
,
b
->
grad
);
_SumMe
(
b
->
grad
,
bGradTMP2
);
DelTensorBuf
(
bGradTMP2
);
/*}
else{
_ReduceSum(interGrad, b->grad, 0);
}*/
DelTensorBuf
(
interGrad
);
}
DelTensorBuf
(
interGrad
);
}
DelTensorBuf
(
interGradTMP
);
DelTensorBuf
(
bTMP
);
DelTensorBuf
(
aTMP2
);
DelTensorBuf
(
aTMP1
);
DelTensorBuf
(
interGradTMP
);
DelTensorBuf
(
bTMP
);
DelTensorBuf
(
aTMP2
);
DelTensorBuf
(
aTMP1
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -521,9 +550,9 @@ void XMathGrad::GradMatrixMul(XTensor * node, bool isEfficient)
MATRIX_TRANS_TYPE
transB
=
income
.
GetParamTrans
(
1
);
DTYPE
alpha
=
income
.
GetParam
(
2
);
if
(
!
isEfficient
||
a
->
isGrad
)
if
(
!
isEfficient
||
a
->
isGrad
)
XNoder
::
MakeGrad
(
a
);
if
(
!
isEfficient
||
b
->
isGrad
)
if
(
!
isEfficient
||
b
->
isGrad
)
XNoder
::
MakeGrad
(
b
);
XTensor
*
c
=
node
;
...
...
@@ -531,9 +560,9 @@ void XMathGrad::GradMatrixMul(XTensor * node, bool isEfficient)
XTensor
*
deda
=
a
->
grad
;
XTensor
*
dedb
=
b
->
grad
;
if
(
a
->
order
==
2
&&
b
->
order
==
2
)
if
(
a
->
order
==
2
&&
b
->
order
==
2
)
GradMatrixMul
(
a
,
deda
,
transA
,
b
,
dedb
,
transB
,
dedc
,
alpha
,
isEfficient
);
else
if
(
transA
==
X_NOTRANS
&&
a
->
order
>
2
&&
b
->
order
==
2
){
else
if
(
transA
==
X_NOTRANS
&&
a
->
order
>
2
&&
b
->
order
==
2
){
int
orderBackupA
=
a
->
order
;
int
orderBackupC
=
c
->
order
;
int
dimsBackupA
[
MAX_TENSOR_DIM_NUM
];
...
...
@@ -543,7 +572,7 @@ void XMathGrad::GradMatrixMul(XTensor * node, bool isEfficient)
a
->
Reshape
(
a
->
unitNum
/
a
->
GetDim
(
-
1
),
a
->
GetDim
(
-
1
));
c
->
Reshape
(
c
->
unitNum
/
c
->
GetDim
(
-
1
),
c
->
GetDim
(
-
1
));
if
(
!
isEfficient
||
a
->
isGrad
)
if
(
!
isEfficient
||
a
->
isGrad
)
deda
->
Reshape
(
deda
->
unitNum
/
deda
->
GetDim
(
-
1
),
deda
->
GetDim
(
-
1
));
dedc
->
Reshape
(
dedc
->
unitNum
/
dedc
->
GetDim
(
-
1
),
dedc
->
GetDim
(
-
1
));
...
...
@@ -551,7 +580,7 @@ void XMathGrad::GradMatrixMul(XTensor * node, bool isEfficient)
a
->
Reshape
(
orderBackupA
,
dimsBackupA
);
c
->
Reshape
(
orderBackupC
,
dimsBackupC
);
if
(
!
isEfficient
||
a
->
isGrad
)
if
(
!
isEfficient
||
a
->
isGrad
)
deda
->
Reshape
(
orderBackupA
,
dimsBackupA
);
dedc
->
Reshape
(
orderBackupC
,
dimsBackupC
);
}
...
...
@@ -578,54 +607,54 @@ void XMathGrad::GradMatrixMul(XTensor * a, XTensor * deda, MATRIX_TRANS_TYPE tra
XTensor
*
dedc
,
DTYPE
alpha
,
bool
isEfficient
)
{
/* c = a * b * \alpha */
if
(
transA
==
X_NOTRANS
&&
transB
==
X_NOTRANS
)
{
if
(
transA
==
X_NOTRANS
&&
transB
==
X_NOTRANS
)
{
/* dE/da = dE/dc * b^T * \alpha */
if
(
!
isEfficient
||
a
->
isGrad
)
if
(
!
isEfficient
||
a
->
isGrad
)
_MatrixMul
(
dedc
,
X_NOTRANS
,
b
,
X_TRANS
,
deda
,
alpha
,
1.0
F
);
/* dE/db = a^T * dE/dc * \alpha */
if
(
!
isEfficient
||
b
->
isGrad
)
if
(
!
isEfficient
||
b
->
isGrad
)
_MatrixMul
(
a
,
X_TRANS
,
dedc
,
X_NOTRANS
,
dedb
,
alpha
,
1.0
F
);
}
/* c = a^T * b * \alpha */
else
if
(
transA
==
X_TRANS
&&
transB
==
X_NOTRANS
){
else
if
(
transA
==
X_TRANS
&&
transB
==
X_NOTRANS
){
/* dE/da = (dE/dc * b^T)^T * \alpha
= b * dE/dc^T * \alpha */
if
(
!
isEfficient
||
a
->
isGrad
)
if
(
!
isEfficient
||
a
->
isGrad
)
_MatrixMul
(
b
,
X_NOTRANS
,
dedc
,
X_TRANS
,
deda
,
alpha
,
1.0
F
);
/* dE/db = a * dE/dc * \alpha */
if
(
!
isEfficient
||
b
->
isGrad
)
if
(
!
isEfficient
||
b
->
isGrad
)
_MatrixMul
(
a
,
X_NOTRANS
,
dedc
,
X_NOTRANS
,
dedb
,
alpha
,
1.0
F
);
}
/* c = a * b^T * \alpha */
else
if
(
transA
==
X_NOTRANS
&&
transB
==
X_TRANS
){
else
if
(
transA
==
X_NOTRANS
&&
transB
==
X_TRANS
){
/* dE/da = dE/dc * b * \alpha */
if
(
!
isEfficient
||
a
->
isGrad
)
if
(
!
isEfficient
||
a
->
isGrad
)
_MatrixMul
(
dedc
,
X_NOTRANS
,
b
,
X_NOTRANS
,
deda
,
alpha
,
1.0
F
);
/* dE/db = (a^T * dE/dc)^T * \alpha
= dE/dc^T * a * \alpha */
if
(
!
isEfficient
||
b
->
isGrad
)
if
(
!
isEfficient
||
b
->
isGrad
)
_MatrixMul
(
dedc
,
X_TRANS
,
a
,
X_NOTRANS
,
dedb
,
alpha
,
1.0
F
);
}
/* c = a^T * b^T * \alpha */
else
if
(
transA
==
X_TRANS
&&
transB
==
X_TRANS
){
else
if
(
transA
==
X_TRANS
&&
transB
==
X_TRANS
){
/* dE/da = (dE/dc * b)^T * \alpha
= b^T * dE/dc^T * \alpha */
if
(
!
isEfficient
||
a
->
isGrad
)
if
(
!
isEfficient
||
a
->
isGrad
)
_MatrixMul
(
b
,
X_TRANS
,
dedc
,
X_TRANS
,
deda
,
alpha
,
1.0
F
);
/* dE/db = (a * dE/dc)^T * \alpha
= dE/dc^T * a^T * \alpha */
if
(
!
isEfficient
||
b
->
isGrad
)
if
(
!
isEfficient
||
b
->
isGrad
)
_MatrixMul
(
dedc
,
X_TRANS
,
a
,
X_TRANS
,
dedb
,
alpha
,
1.0
F
);
}
}
...
...
@@ -653,55 +682,65 @@ void XMathGrad::GradMatrixMulBatched(XTensor * node, bool isEfficient)
MATRIX_TRANS_TYPE
transB
=
income
.
GetParamTrans
(
1
);
DTYPE
alpha
=
income
.
GetParam
(
2
);
XNoder
::
MakeGrad
(
a
);
XNoder
::
MakeGrad
(
b
);
if
(
!
isEfficient
||
a
->
isGrad
)
XNoder
::
MakeGrad
(
a
);
if
(
!
isEfficient
||
b
->
isGrad
)
XNoder
::
MakeGrad
(
b
);
XTensor
*
dedc
=
node
->
grad
;
XTensor
*
deda
=
a
->
grad
;
XTensor
*
dedb
=
b
->
grad
;
/* c = a * b * \alpha */
if
(
transA
==
X_NOTRANS
&&
transB
==
X_NOTRANS
)
{
if
(
transA
==
X_NOTRANS
&&
transB
==
X_NOTRANS
)
{
/* dE/da = dE/dc * b^T * \alpha */
_MatrixMulBatched
(
dedc
,
X_NOTRANS
,
b
,
X_TRANS
,
deda
,
alpha
,
1.0
F
);
if
(
!
isEfficient
||
a
->
isGrad
)
_MatrixMulBatched
(
dedc
,
X_NOTRANS
,
b
,
X_TRANS
,
deda
,
alpha
,
1.0
F
);
/* dE/db = a^T * dE/dc * \alpha */
_MatrixMulBatched
(
a
,
X_TRANS
,
dedc
,
X_NOTRANS
,
dedb
,
alpha
,
1.0
F
);
if
(
!
isEfficient
||
b
->
isGrad
)
_MatrixMulBatched
(
a
,
X_TRANS
,
dedc
,
X_NOTRANS
,
dedb
,
alpha
,
1.0
F
);
}
/* c = a^T * b * \alpha */
else
if
(
transA
==
X_TRANS
&&
transB
==
X_NOTRANS
)
{
else
if
(
transA
==
X_TRANS
&&
transB
==
X_NOTRANS
)
{
/* dE/da = (dE/dc * b^T)^T * \alpha
= b * dE/dc^T * \alpha */
_MatrixMulBatched
(
b
,
X_NOTRANS
,
dedc
,
X_TRANS
,
deda
,
alpha
,
1.0
F
);
if
(
!
isEfficient
||
a
->
isGrad
)
_MatrixMulBatched
(
b
,
X_NOTRANS
,
dedc
,
X_TRANS
,
deda
,
alpha
,
1.0
F
);
/* dE/db = a * dE/dc * \alpha */
_MatrixMulBatched
(
a
,
X_NOTRANS
,
dedc
,
X_NOTRANS
,
dedb
,
alpha
,
1.0
F
);
if
(
!
isEfficient
||
b
->
isGrad
)
_MatrixMulBatched
(
a
,
X_NOTRANS
,
dedc
,
X_NOTRANS
,
dedb
,
alpha
,
1.0
F
);
}
/* c = a * b^T * \alpha */
else
if
(
transA
==
X_NOTRANS
&&
transB
==
X_TRANS
)
{
else
if
(
transA
==
X_NOTRANS
&&
transB
==
X_TRANS
)
{
/* dE/da = dE/dc * b * \alpha */
_MatrixMulBatched
(
dedc
,
X_NOTRANS
,
b
,
X_NOTRANS
,
deda
,
alpha
,
1.0
F
);
if
(
!
isEfficient
||
a
->
isGrad
)
_MatrixMulBatched
(
dedc
,
X_NOTRANS
,
b
,
X_NOTRANS
,
deda
,
alpha
,
1.0
F
);
/* dE/db = (a^T * dE/dc)^T * \alpha
= dE/dc^T * a * \alpha */
_MatrixMulBatched
(
dedc
,
X_TRANS
,
a
,
X_NOTRANS
,
dedb
,
alpha
,
1.0
F
);
if
(
!
isEfficient
||
b
->
isGrad
)
_MatrixMulBatched
(
dedc
,
X_TRANS
,
a
,
X_NOTRANS
,
dedb
,
alpha
,
1.0
F
);
}
/* c = a^T * b^T * \alpha */
else
if
(
transA
==
X_TRANS
&&
transB
==
X_TRANS
)
{
else
if
(
transA
==
X_TRANS
&&
transB
==
X_TRANS
)
{
/* dE/da = (dE/dc * b)^T * \alpha
= b^T * dE/dc^T * \alpha */
_MatrixMulBatched
(
b
,
X_TRANS
,
dedc
,
X_TRANS
,
deda
,
alpha
,
1.0
F
);
if
(
!
isEfficient
||
a
->
isGrad
)
_MatrixMulBatched
(
b
,
X_TRANS
,
dedc
,
X_TRANS
,
deda
,
alpha
,
1.0
F
);
/* dE/db = (a * dE/dc)^T * \alpha
= dE/dc^T * a^T * \alpha */
_MatrixMulBatched
(
dedc
,
X_TRANS
,
a
,
X_TRANS
,
dedb
,
alpha
,
1.0
F
);
if
(
!
isEfficient
||
b
->
isGrad
)
_MatrixMulBatched
(
dedc
,
X_TRANS
,
a
,
X_TRANS
,
dedb
,
alpha
,
1.0
F
);
}
node
->
visitMark
=
NODE_FINISHED
;
...
...
@@ -728,11 +767,13 @@ void XMathGrad::GradMultiply(XTensor * node, bool isEfficient)
CheckNTErrors
(
_IsSameShaped
(
a
,
b
),
"Wrong sized input tensors!"
);
/* dE/da = dE/dc * b */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Multiply
(
node
->
grad
,
b
,
a
->
grad
,
1.0
F
);
}
/* dE/db = dE/dc * a */
if
(
!
isEfficient
||
b
->
isGrad
)
{
XNoder
::
MakeGrad
(
b
);
_Multiply
(
node
->
grad
,
a
,
b
->
grad
,
1.0
F
);
...
...
@@ -760,77 +801,70 @@ void XMathGrad::GradMultiplyDim(XTensor * node, bool isEfficient)
XTensor
*
a
=
income
.
tails
[
0
];
XTensor
*
b
=
income
.
tails
[
1
];
int
n
=
income
.
GetParamInt
(
0
);
XNoder
::
MakeGrad
(
a
);
XNoder
::
MakeGrad
(
b
);
/* dE/da */
_MultiplyDim
(
node
->
grad
,
b
,
a
->
grad
,
n
,
1.0
F
);
/* dE/db */
int
order
=
a
->
order
;
int
dimSize
[
MAX_TENSOR_DIM_NUM
];
memcpy
(
dimSize
,
a
->
dimSize
,
sizeof
(
int
)
*
a
->
order
);
/* dE/da = dE/dc * b */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_MultiplyDim
(
node
->
grad
,
b
,
a
->
grad
,
n
,
1.0
F
);
}
XTensor
*
bGradTMP
=
NewTensorBufV2
(
node
->
grad
,
node
->
devID
,
node
->
mem
);
_Multiply
(
node
->
grad
,
a
,
bGradTMP
);
if
(
n
==
order
-
1
){
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
a
->
unitNum
/
dimSize
[
order
-
1
];
reshapedSize
[
1
]
=
dimSize
[
order
-
1
];
/* dE/db = (dE/dc * a).reduce(0,...,n-1,n+1,...) */
if
(
!
isEfficient
||
b
->
isGrad
)
{
XNoder
::
MakeGrad
(
b
);
int
order
=
a
->
order
;
int
dimSize
[
MAX_TENSOR_DIM_NUM
];
memcpy
(
dimSize
,
a
->
dimSize
,
sizeof
(
int
)
*
a
->
order
);
/* we reshape dE/dc * a to a matrix whose column number is equal to the
size of b. Then we can reduce the matrix into a row vector. */
bGradTMP
->
Reshape
(
2
,
reshapedSize
);
XTensor
*
bGradTMP
=
NewTensorBufV2
(
node
->
grad
,
node
->
devID
,
node
->
mem
);
_Multiply
(
node
->
grad
,
a
,
bGradTMP
);
//if(b->outgo.tailNum > 1){
XTensor
*
bGradTMP2
=
NewTensorBufV2
(
b
->
grad
,
b
->
devID
,
b
->
mem
);
if
(
n
==
order
-
1
)
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
a
->
unitNum
/
dimSize
[
order
-
1
];
reshapedSize
[
1
]
=
dimSize
[
order
-
1
];
/* we reshape dE/dc * a to a matrix whose column number is equal to the
size of b. Then we can reduce the matrix into a row vector. */
bGradTMP
->
Reshape
(
2
,
reshapedSize
);
XTensor
*
bGradTMP2
=
NewTensorBufV2
(
b
->
grad
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
bGradTMP
,
bGradTMP2
,
0
);
_Sum
(
b
->
grad
,
bGradTMP2
,
b
->
grad
);
DelTensorBuf
(
bGradTMP2
);
/*}
else{
_ReduceSum(bGradTMP, b->grad, 0);
}*/
}
else
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
1
;
reshapedSize
[
1
]
=
dimSize
[
n
];
reshapedSize
[
2
]
=
1
;
for
(
int
i
=
0
;
i
<
order
;
i
++
){
if
(
i
<
n
)
reshapedSize
[
0
]
*=
dimSize
[
i
];
}
else
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
1
;
reshapedSize
[
1
]
=
dimSize
[
n
];
reshapedSize
[
2
]
=
1
;
reshapedSize
[
2
]
=
a
->
unitNum
/
(
reshapedSize
[
0
]
*
reshapedSize
[
1
]);
for
(
int
i
=
0
;
i
<
order
;
i
++
)
{
if
(
i
<
n
)
reshapedSize
[
0
]
*=
dimSize
[
i
];
}
/* we reshape dE/dc to a 3D tensor of size (x, y, z) where y = |b|.
Then reduce along with z and x to obtain dE/db. */
bGradTMP
->
Reshape
(
3
,
reshapedSize
);
reshapedSize
[
2
]
=
a
->
unitNum
/
(
reshapedSize
[
0
]
*
reshapedSize
[
1
]);
XTensor
*
interGrad
=
NewTensorBufV2
(
2
,
reshapedSize
,
b
->
dataType
,
b
->
denseRatio
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
bGradTMP
,
interGrad
,
2
);
/* we reshape dE/dc to a 3D tensor of size (x, y, z) where y = |b|.
Then reduce along with z and x to obtain dE/db. */
bGradTMP
->
Reshape
(
3
,
reshapedSize
);
//if(b->outgo.tailNum > 1){
XTensor
*
bGradTMP2
=
NewTensorBufV2
(
b
->
grad
,
b
->
devID
,
b
->
mem
);
XTensor
*
interGrad
=
NewTensorBufV2
(
2
,
reshapedSize
,
b
->
dataType
,
b
->
denseRatio
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
bGradTMP
,
interGrad
,
2
);
XTensor
*
bGradTMP2
=
NewTensorBufV2
(
b
->
grad
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
interGrad
,
bGradTMP2
,
0
);
_Sum
(
b
->
grad
,
bGradTMP2
,
b
->
grad
);
DelTensorBuf
(
bGradTMP2
);
/*}
else{
_ReduceSum(interGrad, b->grad, 0);
}*/
DelTensorBuf
(
interGrad
);
DelTensorBuf
(
interGrad
);
}
DelTensorBuf
(
bGradTMP
);
}
DelTensorBuf
(
bGradTMP
);
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -857,11 +891,18 @@ void XMathGrad::GradMultiplyBroadcast(XTensor * node, bool isEfficient)
XTensor
*
b
=
income
.
tails
[
1
];
XNoder
::
MakeGrad
(
a
);
_MultiplyBroadcast
(
node
->
grad
,
b
,
a
->
grad
,
1.0
F
);
if
(
b
->
isVar
||
b
->
income
.
tailNum
>
0
){
ShowNTErrors
(
"TODO"
);
/* dE/da = dE/dc * b */
if
(
!
isEfficient
||
a
->
isGrad
)
_MultiplyBroadcast
(
node
->
grad
,
b
,
a
->
grad
,
1.0
F
);
/* dE/db = (dE/dc * a).reduce(0...n) */
if
(
!
isEfficient
||
b
->
isGrad
)
{
if
(
b
->
isVar
||
b
->
income
.
tailNum
>
0
)
ShowNTErrors
(
"TODO"
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
/*
...
...
@@ -880,14 +921,12 @@ void XMathGrad::GradNegate(XTensor * node, bool isEfficient)
CheckNTErrors
(
income
.
tailNum
==
1
,
"Wrong input tensor number for NEGATE!"
);
XTensor
*
a
=
income
.
tails
[
0
];
XTensor
*
b
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
XNoder
::
MakeGrad
(
a
);
_ScaleAndShift
(
node
->
grad
,
b
,
-
1.0
F
);
_Sum
(
a
->
grad
,
b
,
a
->
grad
);
DelTensorBuf
(
b
);
/* dE/da = dE/dc * (-1) */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
,
-
1.0
F
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -901,7 +940,6 @@ gradient for normalize
void
XMathGrad
::
GradNormalize
(
XTensor
*
node
,
bool
isEfficient
)
{
ShowNTErrors
(
"TODO!"
);
}
/*
...
...
@@ -920,17 +958,20 @@ void XMathGrad::GradPower(XTensor * node, bool isEfficient)
CheckNTErrors
(
income
.
tailNum
==
1
,
"Wrong input tensor number for POWER!"
);
XTensor
*
a
=
income
.
tails
[
0
];
XTensor
*
b
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
DTYPE
p
=
income
.
GetParam
(
0
);
XNoder
::
MakeGrad
(
a
);
/* dE/da = (dE/dc) * p * a^(p-1) */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Power
(
a
,
b
,
p
-
1.0
F
);
_ScaleAndShiftMe
(
b
,
p
);
_Multiply
(
node
->
grad
,
b
,
a
->
grad
,
1.0
F
);
XTensor
*
tmp
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
_Power
(
a
,
tmp
,
p
-
1.0
F
);
_ScaleAndShiftMe
(
tmp
,
p
);
_Multiply
(
node
->
grad
,
tmp
,
a
->
grad
,
1.0
F
);
DelTensorBuf
(
b
);
DelTensorBuf
(
tmp
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -954,9 +995,12 @@ void XMathGrad::GradScaleAndShift(XTensor * node, bool isEfficient)
DTYPE
scale
=
income
.
GetParam
(
0
);
XNoder
::
MakeGrad
(
a
);
/* dE/da = dE/dc * scale */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
,
scale
);
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
,
scale
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -980,9 +1024,12 @@ void XMathGrad::GradScale(XTensor * node, bool isEfficient)
DTYPE
scale
=
income
.
GetParam
(
0
);
XNoder
::
MakeGrad
(
a
);
/* dE/da = dE/dc * scale */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
,
scale
);
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
,
scale
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -1006,9 +1053,12 @@ void XMathGrad::GradDescale(XTensor * node, bool isEfficient)
DTYPE
descale
=
income
.
GetParam
(
0
);
XNoder
::
MakeGrad
(
a
);
/* dE/da = dE/dc / descale */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
,
1
/
descale
);
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
,
1
/
descale
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -1030,9 +1080,12 @@ void XMathGrad::GradShift(XTensor * node, bool isEfficient)
XTensor
*
a
=
income
.
tails
[
0
];
XNoder
::
MakeGrad
(
a
);
/* dE/da = dE/dc */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
);
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -1057,11 +1110,17 @@ void XMathGrad::GradSub(XTensor * node, bool isEfficient)
XTensor
*
b
=
income
.
tails
[
1
];
DTYPE
beta
=
income
.
GetParam
(
0
);
XNoder
::
MakeGrad
(
a
);
XNoder
::
MakeGrad
(
b
);
/* dE/da = dE/dc */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
);
}
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
);
_Sum
(
b
->
grad
,
node
->
grad
,
b
->
grad
,
-
beta
);
/* dE/db = -dE/dc * \beta */
if
(
!
isEfficient
||
b
->
isGrad
)
{
XNoder
::
MakeGrad
(
b
);
_Sum
(
b
->
grad
,
node
->
grad
,
b
->
grad
,
-
beta
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -1085,81 +1144,70 @@ void XMathGrad::GradSubDim(XTensor * node, bool isEfficient)
XTensor
*
b
=
income
.
tails
[
1
];
int
n
=
income
.
GetParamInt
(
0
);
DTYPE
beta
=
income
.
GetParam
(
1
);
XNoder
::
MakeGrad
(
a
);
XNoder
::
MakeGrad
(
b
);
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
);
/* dE/da = dE/dc */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
);
}
int
order
=
a
->
order
;
int
dimSize
[
MAX_TENSOR_DIM_NUM
];
memcpy
(
dimSize
,
a
->
dimSize
,
sizeof
(
int
)
*
a
->
order
);
/* dE/db = - dE/dc * b.reduce(0,...,n-1,n+1,...) * \beta */
if
(
!
isEfficient
||
b
->
isGrad
)
{
XNoder
::
MakeGrad
(
b
);
int
order
=
a
->
order
;
int
dimSize
[
MAX_TENSOR_DIM_NUM
];
memcpy
(
dimSize
,
a
->
dimSize
,
sizeof
(
int
)
*
a
->
order
);
if
(
n
==
order
-
1
)
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
a
->
unitNum
/
dimSize
[
order
-
1
];
reshapedSize
[
1
]
=
dimSize
[
order
-
1
];
if
(
n
==
order
-
1
)
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
a
->
unitNum
/
dimSize
[
order
-
1
];
reshapedSize
[
1
]
=
dimSize
[
order
-
1
];
/* we reshape dE/dc to a matrix whose column number is equal to the
size of b. Then we can reduce the matrix into a row vector. */
node
->
grad
->
Reshape
(
2
,
reshapedSize
);
/* we reshape dE/dc to a matrix whose column number is equal to the
size of b. Then we can reduce the matrix into a row vector. */
node
->
grad
->
Reshape
(
2
,
reshapedSize
);
//if(b->outgo.tailNum > 1){
XTensor
*
bGradTMP
=
NewTensorBufV2
(
b
->
grad
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
node
->
grad
,
bGradTMP
,
0
);
if
(
beta
!=
1.0
F
)
if
(
beta
!=
1.0
F
)
_ScaleAndShiftMe
(
bGradTMP
,
beta
);
_Sub
(
b
->
grad
,
bGradTMP
,
b
->
grad
);
DelTensorBuf
(
bGradTMP
);
/*}
else{
_ReduceSum(node->grad, b->grad, 0);
if(beta != 1.0F)
_ScaleAndShiftMe(b->grad, beta);
_ScaleAndShiftMe(b->grad, -1.0F);
}*/
node
->
grad
->
Reshape
(
order
,
dimSize
);
}
else
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
1
;
reshapedSize
[
1
]
=
dimSize
[
n
];
reshapedSize
[
2
]
=
1
;
for
(
int
i
=
0
;
i
<
order
;
i
++
){
if
(
i
<
n
)
reshapedSize
[
0
]
*=
dimSize
[
i
];
node
->
grad
->
Reshape
(
order
,
dimSize
);
}
else
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
1
;
reshapedSize
[
1
]
=
dimSize
[
n
];
reshapedSize
[
2
]
=
1
;
reshapedSize
[
2
]
=
a
->
unitNum
/
(
reshapedSize
[
0
]
*
reshapedSize
[
1
]);
for
(
int
i
=
0
;
i
<
order
;
i
++
)
{
if
(
i
<
n
)
reshapedSize
[
0
]
*=
dimSize
[
i
];
}
/* we reshape dE/dc to a 3D tensor of size (x, y, z) where y = |b|.
Then reduce along with z and x to obtain dE/db. */
node
->
grad
->
Reshape
(
3
,
reshapedSize
);
reshapedSize
[
2
]
=
a
->
unitNum
/
(
reshapedSize
[
0
]
*
reshapedSize
[
1
]);
XTensor
*
interGrad
=
NewTensorBufV2
(
2
,
reshapedSize
,
b
->
dataType
,
b
->
denseRatio
,
b
->
devID
,
b
->
mem
);
/* we reshape dE/dc to a 3D tensor of size (x, y, z) where y = |b|.
Then reduce along with z and x to obtain dE/db. */
node
->
grad
->
Reshape
(
3
,
reshapedSize
);
_ReduceSum
(
node
->
grad
,
interGrad
,
2
);
XTensor
*
interGrad
=
NewTensorBufV2
(
2
,
reshapedSize
,
b
->
dataType
,
b
->
denseRatio
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
node
->
grad
,
interGrad
,
2
);
//if(b->outgo.tailNum > 1){
XTensor
*
bGradTMP
=
NewTensorBufV2
(
b
->
grad
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
interGrad
,
bGradTMP
,
0
);
if
(
beta
!=
1.0
F
)
if
(
beta
!=
1.0
F
)
_ScaleAndShiftMe
(
bGradTMP
,
beta
);
_Sub
(
b
->
grad
,
bGradTMP
,
b
->
grad
);
DelTensorBuf
(
bGradTMP
);
/*}
else{
_ReduceSum(interGrad, b->grad, 0);
if(beta != 1.0F)
_ScaleAndShiftMe(b->grad, beta);
_ScaleAndShiftMe(b->grad, -1.0F);
}*/
node
->
grad
->
Reshape
(
order
,
dimSize
);
DelTensorBuf
(
interGrad
);
node
->
grad
->
Reshape
(
order
,
dimSize
);
DelTensorBuf
(
interGrad
);
}
}
node
->
visitMark
=
NODE_FINISHED
;
...
...
@@ -1172,7 +1220,6 @@ c = a + b * \beta
we have
dE/da = dE/dc
dE/db = dE/dc * \beta
>> node - the node (c) for backward computation
>> isEfficient - indicates whether the computation is in
an efficient manner
...
...
@@ -1186,12 +1233,14 @@ void XMathGrad::GradSum(XTensor * node, bool isEfficient)
XTensor
*
b
=
income
.
tails
[
1
];
DTYPE
beta
=
income
.
GetParam
(
0
);
if
(
!
isEfficient
||
a
->
isGrad
){
/* dE/da = dE/dc */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
);
}
if
(
!
isEfficient
||
b
->
isGrad
){
/* dE/db = dE/dc * \beta */
if
(
!
isEfficient
||
b
->
isGrad
)
{
XNoder
::
MakeGrad
(
b
);
_Sum
(
b
->
grad
,
node
->
grad
,
b
->
grad
,
beta
);
}
...
...
@@ -1219,81 +1268,72 @@ void XMathGrad::GradSumDim(XTensor * node, bool isEfficient)
XTensor
*
b
=
income
.
tails
[
1
];
int
n
=
income
.
GetParamInt
(
0
);
DTYPE
beta
=
income
.
GetParam
(
1
);
XNoder
::
MakeGrad
(
a
);
XNoder
::
MakeGrad
(
b
);
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
);
if
(
!
isEfficient
||
a
->
isGrad
)
{
/* dE/da = dE/dc */
XNoder
::
MakeGrad
(
a
);
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
);
}
int
order
=
a
->
order
;
int
dimSize
[
MAX_TENSOR_DIM_NUM
];
memcpy
(
dimSize
,
a
->
dimSize
,
sizeof
(
int
)
*
a
->
order
);
/* dE/db = dE/dc * a.reduce(0,...,n-1,n+1,...) * \beta */
if
(
!
isEfficient
||
b
->
isGrad
)
{
XNoder
::
MakeGrad
(
b
);
int
order
=
a
->
order
;
int
dimSize
[
MAX_TENSOR_DIM_NUM
];
memcpy
(
dimSize
,
a
->
dimSize
,
sizeof
(
int
)
*
a
->
order
);
if
(
n
==
order
-
1
)
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
a
->
unitNum
/
dimSize
[
order
-
1
];
reshapedSize
[
1
]
=
dimSize
[
order
-
1
];
if
(
n
==
order
-
1
)
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
a
->
unitNum
/
dimSize
[
order
-
1
];
reshapedSize
[
1
]
=
dimSize
[
order
-
1
];
/* we reshape dE/dc to a matrix whose column number is equal to the
size of b. Then we can reduce the matrix into a row vector. */
node
->
grad
->
Reshape
(
2
,
reshapedSize
);
/* we reshape dE/dc to a matrix whose column number is equal to the
size of b. Then we can reduce the matrix into a row vector. */
node
->
grad
->
Reshape
(
2
,
reshapedSize
);
//if(b->outgo.tailNum > 1){
XTensor
*
bGradTMP
=
NewTensorBufV2
(
b
->
grad
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
node
->
grad
,
bGradTMP
,
0
);
if
(
beta
!=
1.0
F
)
if
(
beta
!=
1.0
F
)
_ScaleAndShiftMe
(
bGradTMP
,
beta
);
_Sum
(
bGradTMP
,
b
->
grad
,
b
->
grad
);
DelTensorBuf
(
bGradTMP
);
/*}
else{
_ReduceSum(node->grad, b->grad, 0);
if(beta != 1.0F)
_ScaleAndShiftMe(b->grad, beta);
}*/
node
->
grad
->
Reshape
(
order
,
dimSize
);
}
else
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
1
;
reshapedSize
[
1
]
=
dimSize
[
n
];
reshapedSize
[
2
]
=
1
;
for
(
int
i
=
0
;
i
<
order
;
i
++
){
if
(
i
<
n
)
reshapedSize
[
0
]
*=
dimSize
[
i
];
node
->
grad
->
Reshape
(
order
,
dimSize
);
}
else
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
1
;
reshapedSize
[
1
]
=
dimSize
[
n
];
reshapedSize
[
2
]
=
1
;
reshapedSize
[
2
]
=
a
->
unitNum
/
(
reshapedSize
[
0
]
*
reshapedSize
[
1
]);
for
(
int
i
=
0
;
i
<
order
;
i
++
)
{
if
(
i
<
n
)
reshapedSize
[
0
]
*=
dimSize
[
i
];
}
/* we reshape dE/dc to a 3D tensor of size (x, y, z) where y = |b|.
Then reduce along with z and x to obtain dE/db. */
node
->
grad
->
Reshape
(
3
,
reshapedSize
);
reshapedSize
[
2
]
=
a
->
unitNum
/
(
reshapedSize
[
0
]
*
reshapedSize
[
1
]);
XTensor
*
interGrad
=
NewTensorBufV2
(
2
,
reshapedSize
,
b
->
dataType
,
b
->
denseRatio
,
b
->
devID
,
b
->
mem
);
/* we reshape dE/dc to a 3D tensor of size (x, y, z) where y = |b|.
Then reduce along with z and x to obtain dE/db. */
node
->
grad
->
Reshape
(
3
,
reshapedSize
);
_ReduceSum
(
node
->
grad
,
interGrad
,
2
);
XTensor
*
interGrad
=
NewTensorBufV2
(
2
,
reshapedSize
,
b
->
dataType
,
b
->
denseRatio
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
node
->
grad
,
interGrad
,
2
);
//if(b->outgo.tailNum > 1){
XTensor
*
bGradTMP
=
NewTensorBufV2
(
b
->
grad
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
interGrad
,
bGradTMP
,
0
);
if
(
beta
!=
1.0
F
)
if
(
beta
!=
1.0
F
)
_ScaleAndShiftMe
(
bGradTMP
,
beta
);
_Sum
(
bGradTMP
,
b
->
grad
,
b
->
grad
);
DelTensorBuf
(
bGradTMP
);
/*}
else{
_ReduceSum(interGrad, b->grad, 0);
if(beta != 1.0F)
_ScaleAndShiftMe(b->grad, beta);
}*/
node
->
grad
->
Reshape
(
order
,
dimSize
);
DelTensorBuf
(
interGrad
);
node
->
grad
->
Reshape
(
order
,
dimSize
);
DelTensorBuf
(
interGrad
);
}
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -1320,12 +1360,20 @@ void XMathGrad::GradSumBroadcast(XTensor * node, bool isEfficient)
XTensor
*
b
=
income
.
tails
[
1
];
//DTYPE beta = income.GetParam(0);
XNoder
::
MakeGrad
(
a
);
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
);
/* dE/da = dE/dc */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
);
}
if
(
b
->
isVar
||
b
->
income
.
tailNum
>
0
){
ShowNTErrors
(
"TODO"
);
/* dE/db = dE/dc * a.reduce(0..n) * \beta */
if
(
!
isEfficient
||
b
->
isGrad
)
{
if
(
b
->
isVar
||
b
->
income
.
tailNum
>
0
)
{
ShowNTErrors
(
"TODO"
);
}
}
node
->
visitMark
=
NODE_FINISHED
;
}
/*
...
...
@@ -1345,18 +1393,21 @@ void XMathGrad::GradReduceMean(XTensor * node, bool isEfficient)
CheckNTErrors
(
income
.
tailNum
==
1
,
"Wrong input tensor number for Reduce!"
);
XTensor
*
a
=
income
.
tails
[
0
];
XTensor
*
b
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
int
dim
=
income
.
GetParamInt
(
0
);
int
n
=
a
->
GetDim
(
dim
);
XNoder
::
MakeGrad
(
a
);
/* dE/da = Unsqueeze(dE/dc) * 1/dimSizeA[dim] */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_Unsqueeze
(
node
->
grad
,
b
,
dim
,
n
);
_ScaleAndShiftMe
(
b
,
1.0
F
/
n
);
_Sum
(
a
->
grad
,
b
,
a
->
grad
);
XTensor
*
tmp
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
_Unsqueeze
(
node
->
grad
,
tmp
,
dim
,
n
);
_ScaleAndShiftMe
(
tmp
,
1.0
F
/
n
);
_Sum
(
a
->
grad
,
tmp
,
a
->
grad
);
DelTensorBuf
(
b
);
DelTensorBuf
(
tmp
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -1366,7 +1417,7 @@ gradient for reduceSum
for
c = reduceSum(a, dim)
we have
dE/da = Unsqueeze(dE/dc)
* 1
dE/da = Unsqueeze(dE/dc)
>> node - the node (c) for backward computation
>> isEfficient - indicates whether the computation is in
...
...
@@ -1378,17 +1429,19 @@ void XMathGrad::GradReduceSum(XTensor * node, bool isEfficient)
CheckNTErrors
(
income
.
tailNum
==
1
,
"Wrong input tensor number for Reduce!"
);
XTensor
*
a
=
income
.
tails
[
0
];
XTensor
*
b
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
int
dim
=
income
.
GetParamInt
(
0
);
int
n
=
a
->
GetDim
(
dim
);
XNoder
::
MakeGrad
(
a
);
_Unsqueeze
(
node
->
grad
,
b
,
dim
,
n
);
_Sum
(
a
->
grad
,
b
,
a
->
grad
);
/* dE/da = Unsqueeze(dE/dc) */
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
DelTensorBuf
(
b
);
XTensor
*
tmp
=
NewTensorBufV2
(
a
,
a
->
devID
,
a
->
mem
);
_Unsqueeze
(
node
->
grad
,
tmp
,
dim
,
n
);
_Sum
(
a
->
grad
,
tmp
,
a
->
grad
);
DelTensorBuf
(
tmp
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -1419,22 +1472,28 @@ void XMathGrad::GradReduceSumSquared(XTensor * node, bool isEfficient)
int
dim
=
income
.
GetParamInt
(
0
);
int
n
=
a
->
GetDim
(
dim
);
XNoder
::
MakeGrad
(
a
);
XNoder
::
MakeGrad
(
b
);
/* compute a-b */
_Unsqueeze
(
b
,
c
,
dim
,
n
);
_Sub
(
a
,
c
,
d
);
_ReduceSum
(
d
,
f
,
dim
);
/* dE/da_i = Unsqueeze(dE/dc) * 2 * (a_i - b) */
_ScaleAndShiftMe
(
d
,
2.0
F
);
_Unsqueeze
(
node
->
grad
,
e
,
dim
,
n
);
_Multiply
(
d
,
e
,
a
->
grad
,
1.0
F
);
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_ScaleAndShiftMe
(
d
,
2.0
F
);
_Unsqueeze
(
node
->
grad
,
e
,
dim
,
n
);
_Multiply
(
d
,
e
,
a
->
grad
,
1.0
F
);
}
/* dE/db = dE/dc * -2 * n * \sum_i (a_i - b) */
_ScaleAndShiftMe
(
f
,
-
2.0
F
);
_Multiply
(
node
->
grad
,
f
,
b
->
grad
,
1.0
F
);
if
(
!
isEfficient
||
b
->
isGrad
)
{
XNoder
::
MakeGrad
(
b
);
_ReduceSum
(
d
,
f
,
dim
);
_ScaleAndShiftMe
(
f
,
-
2.0
F
);
_Multiply
(
node
->
grad
,
f
,
b
->
grad
,
1.0
F
);
}
DelTensorBuf
(
f
);
DelTensorBuf
(
e
);
...
...
@@ -1471,22 +1530,27 @@ void XMathGrad::GradReduceVariance(XTensor * node, bool isEfficient)
int
dim
=
income
.
GetParamInt
(
0
);
int
n
=
a
->
GetDim
(
dim
);
XNoder
::
MakeGrad
(
a
);
XNoder
::
MakeGrad
(
b
);
/* compute a-b */
_Unsqueeze
(
b
,
c
,
dim
,
n
);
_Sub
(
a
,
c
,
d
);
_ReduceSum
(
d
,
f
,
dim
);
/* dE/da_i = Unsqueeze(dE/dc) * 2 * (a_i - b) / n */
_ScaleAndShiftMe
(
d
,
2.0
F
/
n
);
_Unsqueeze
(
node
->
grad
,
e
,
dim
,
n
);
_Multiply
(
d
,
e
,
a
->
grad
,
1.0
F
);
if
(
!
isEfficient
||
a
->
isGrad
)
{
XNoder
::
MakeGrad
(
a
);
_ScaleAndShiftMe
(
d
,
2.0
F
/
n
);
_Unsqueeze
(
node
->
grad
,
e
,
dim
,
n
);
_Multiply
(
d
,
e
,
a
->
grad
,
1.0
F
);
}
/* dE/db = dE/dc * -2 * \sum_i (a_i - b) */
_ScaleAndShiftMe
(
f
,
-
2.0
F
/
n
);
_Multiply
(
node
->
grad
,
f
,
b
->
grad
,
1.0
F
);
if
(
!
isEfficient
||
b
->
isGrad
)
{
XNoder
::
MakeGrad
(
b
);
_ReduceSum
(
d
,
f
,
dim
);
_ScaleAndShiftMe
(
f
,
-
2.0
F
/
n
);
_Multiply
(
node
->
grad
,
f
,
b
->
grad
,
1.0
F
);
}
DelTensorBuf
(
f
);
DelTensorBuf
(
e
);
...
...
@@ -1496,7 +1560,6 @@ void XMathGrad::GradReduceVariance(XTensor * node, bool isEfficient)
node
->
visitMark
=
NODE_FINISHED
;
}
/*
gradient for operation
for c = matmul(x, w) + b
...
...
@@ -1521,66 +1584,66 @@ void XMathGrad::GradMulAndShift(XTensor * node, bool isEfficient)
MATRIX_TRANS_TYPE
transW
=
income
.
GetParamTrans
(
1
);
MATRIX_TRANS_TYPE
transX
=
income
.
GetParamTrans
(
2
);
if
(
!
isEfficient
||
w
->
isGrad
)
XNoder
::
MakeGrad
(
w
);
if
(
!
isEfficient
||
x
->
isGrad
)
XNoder
::
MakeGrad
(
x
);
if
(
!
isEfficient
||
b
->
isGrad
)
/* dE/db = dE/dc * x.reduce(0,...,n-1,n+1,...) */
if
(
!
isEfficient
||
b
->
isGrad
)
{
XNoder
::
MakeGrad
(
b
);
int
order
=
node
->
order
;
int
dimSize
[
MAX_TENSOR_DIM_NUM
];
memcpy
(
dimSize
,
node
->
dimSize
,
sizeof
(
int
)
*
node
->
order
);
int
order
=
node
->
order
;
int
dimSize
[
MAX_TENSOR_DIM_NUM
];
memcpy
(
dimSize
,
node
->
dimSize
,
sizeof
(
int
)
*
node
->
order
);
/* compute dE/db */
if
(
n
==
order
-
1
)
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
node
->
unitNum
/
dimSize
[
order
-
1
];
reshapedSize
[
1
]
=
dimSize
[
order
-
1
];
/* compute dE/db */
if
(
n
==
order
-
1
)
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
node
->
unitNum
/
dimSize
[
order
-
1
];
reshapedSize
[
1
]
=
dimSize
[
order
-
1
];
/* we reshape dE/dc to a matrix whose column number is equal to the
size of b. Then we can reduce the matrix into a row vector. */
node
->
grad
->
Reshape
(
2
,
reshapedSize
);
/* we reshape dE/dc to a matrix whose column number is equal to the
size of b. Then we can reduce the matrix into a row vector. */
node
->
grad
->
Reshape
(
2
,
reshapedSize
);
XTensor
*
bGradTMP
=
NewTensorBufV2
(
b
->
grad
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
node
->
grad
,
bGradTMP
,
0
);
_Sum
(
bGradTMP
,
b
->
grad
,
b
->
grad
);
DelTensorBuf
(
bGradTMP
);
XTensor
*
bGradTMP
=
NewTensorBufV2
(
b
->
grad
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
node
->
grad
,
bGradTMP
,
0
);
_Sum
(
bGradTMP
,
b
->
grad
,
b
->
grad
);
DelTensorBuf
(
bGradTMP
);
node
->
grad
->
Reshape
(
order
,
dimSize
);
}
else
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
1
;
reshapedSize
[
1
]
=
dimSize
[
n
];
reshapedSize
[
2
]
=
1
;
for
(
int
i
=
0
;
i
<
order
;
i
++
)
{
if
(
i
<
n
)
reshapedSize
[
0
]
*=
dimSize
[
i
];
node
->
grad
->
Reshape
(
order
,
dimSize
);
}
else
{
int
reshapedSize
[
MAX_TENSOR_DIM_NUM
];
reshapedSize
[
0
]
=
1
;
reshapedSize
[
1
]
=
dimSize
[
n
];
reshapedSize
[
2
]
=
1
;
reshapedSize
[
2
]
=
node
->
unitNum
/
(
reshapedSize
[
0
]
*
reshapedSize
[
1
]);
for
(
int
i
=
0
;
i
<
order
;
i
++
)
{
if
(
i
<
n
)
reshapedSize
[
0
]
*=
dimSize
[
i
];
}
/* we reshape dE/dc to a 3D tensor of size (x, y, z) where y = |b|.
Then reduce along with z and x to obtain dE/db. */
node
->
grad
->
Reshape
(
3
,
reshapedSize
);
reshapedSize
[
2
]
=
node
->
unitNum
/
(
reshapedSize
[
0
]
*
reshapedSize
[
1
]);
XTensor
*
interGrad
=
NewTensorBufV2
(
2
,
reshapedSize
,
b
->
dataType
,
b
->
denseRatio
,
b
->
devID
,
b
->
mem
);
/* we reshape dE/dc to a 3D tensor of size (x, y, z) where y = |b|.
Then reduce along with z and x to obtain dE/db. */
node
->
grad
->
Reshape
(
3
,
reshapedSize
);
_ReduceSum
(
node
->
grad
,
interGrad
,
2
);
XTensor
*
interGrad
=
NewTensorBufV2
(
2
,
reshapedSize
,
b
->
dataType
,
b
->
denseRatio
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
node
->
grad
,
interGrad
,
2
);
XTensor
*
bGradTMP
=
NewTensorBufV2
(
b
->
grad
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
interGrad
,
bGradTMP
,
0
);
_Sum
(
bGradTMP
,
b
->
grad
,
b
->
grad
);
DelTensorBuf
(
bGradTMP
);
node
->
grad
->
Reshape
(
order
,
dimSize
);
XTensor
*
bGradTMP
=
NewTensorBufV2
(
b
->
grad
,
b
->
devID
,
b
->
mem
);
_ReduceSum
(
interGrad
,
bGradTMP
,
0
);
_Sum
(
bGradTMP
,
b
->
grad
,
b
->
grad
);
DelTensorBuf
(
bGradTMP
);
DelTensorBuf
(
interGrad
);
node
->
grad
->
Reshape
(
order
,
dimSize
);
DelTensorBuf
(
interGrad
);
}
}
if
(
!
isEfficient
||
w
->
isGrad
)
XNoder
::
MakeGrad
(
w
);
if
(
!
isEfficient
||
x
->
isGrad
)
XNoder
::
MakeGrad
(
x
);
/* compute dE/dx, dE/dw */
XTensor
*
c
=
node
;
...
...
@@ -1590,7 +1653,7 @@ void XMathGrad::GradMulAndShift(XTensor * node, bool isEfficient)
if
(
x
->
order
==
2
&&
w
->
order
==
2
)
GradMatrixMul
(
x
,
dedx
,
transX
,
w
,
dedw
,
transW
,
dedc
,
1.0
F
,
isEfficient
);
else
if
(
transX
==
X_NOTRANS
&&
x
->
order
>
2
&&
w
->
order
==
2
){
else
if
(
transX
==
X_NOTRANS
&&
x
->
order
>
2
&&
w
->
order
==
2
)
{
int
orderBackupX
=
x
->
order
;
int
orderBackupC
=
c
->
order
;
int
dimsBackupX
[
MAX_TENSOR_DIM_NUM
];
...
...
source/network/XBackwardShape.cpp
查看文件 @
18a08a65
...
...
@@ -32,33 +32,33 @@
namespace
nts
{
/* compute dE/dx of a node */
void
XShapeGrad
::
MakeGrad
(
XTensor
*
node
,
bool
isEfficent
)
void
XShapeGrad
::
MakeGrad
(
XTensor
*
node
,
bool
isEffic
i
ent
)
{
CheckNTErrors
(
node
->
grad
!=
NULL
,
"No gradient found!"
);
XLink
&
income
=
node
->
income
;
int
operID
=
income
.
typeID
;
if
(
operID
==
MOVEMENT_COPYINDEXED
)
GradCopyIndexed
(
node
,
isEfficent
);
else
if
(
operID
==
MOVEMENT_GATHER
)
GradGather
(
node
,
isEfficent
);
if
(
operID
==
MOVEMENT_COPYINDEXED
)
GradCopyIndexed
(
node
,
isEffic
i
ent
);
else
if
(
operID
==
MOVEMENT_GATHER
)
GradGather
(
node
,
isEffic
i
ent
);
else
if
(
operID
==
MOVEMENT_DROPOUTWITHINDEX
)
GradDropoutWithIndex
(
node
,
isEfficent
);
else
if
(
operID
==
SHAPE_MERGE
)
GradMerge
(
node
,
isEfficent
);
else
if
(
operID
==
SHAPE_MERGE_LIST
)
GradMergeList
(
node
,
isEfficent
);
else
if
(
operID
==
SHAPE_RESHAPE
)
GradReshape
(
node
,
isEfficent
);
else
if
(
operID
==
SHAPE_SPLIT
)
GradSplit
(
node
,
isEfficent
);
else
if
(
operID
==
SHAPE_SPLIT_LIST
)
GradSplitList
(
node
,
isEfficent
);
GradDropoutWithIndex
(
node
,
isEffic
i
ent
);
else
if
(
operID
==
SHAPE_MERGE
)
GradMerge
(
node
,
isEffic
i
ent
);
else
if
(
operID
==
SHAPE_MERGE_LIST
)
GradMergeList
(
node
,
isEffic
i
ent
);
else
if
(
operID
==
SHAPE_RESHAPE
)
GradReshape
(
node
,
isEffic
i
ent
);
else
if
(
operID
==
SHAPE_SPLIT
)
GradSplit
(
node
,
isEffic
i
ent
);
else
if
(
operID
==
SHAPE_SPLIT_LIST
)
GradSplitList
(
node
,
isEffic
i
ent
);
else
if
(
operID
==
SHAPE_TRANSPOSE
)
GradTranspose
(
node
,
isEfficent
);
else
if
(
operID
==
SHAPE_UNSQUEEZE
)
GradUnsqueeze
(
node
,
isEfficent
);
GradTranspose
(
node
,
isEffic
i
ent
);
else
if
(
operID
==
SHAPE_UNSQUEEZE
)
GradUnsqueeze
(
node
,
isEffic
i
ent
);
else
{
ShowNTErrors
(
"TODO!"
);
}
...
...
@@ -72,10 +72,10 @@ bool XShapeGrad::IsShapeOP(XTensor * node)
}
/* post processing of a node */
void
XShapeGrad
::
PostProcessing
(
XTensor
*
node
,
int
typeID
,
bool
isEfficent
)
void
XShapeGrad
::
PostProcessing
(
XTensor
*
node
,
int
typeID
,
bool
isEffic
i
ent
)
{
if
(
typeID
==
SHAPE_SPLIT_LIST
)
GradSplitListPost
(
node
,
isEfficent
);
if
(
typeID
==
SHAPE_SPLIT_LIST
)
GradSplitListPost
(
node
,
isEffic
i
ent
);
}
/*
...
...
@@ -88,7 +88,7 @@ dE/da = spreadforcopyindexed(b)
>> isEfficient - indicates whether the computation is in
an efficient manner
*/
void
XShapeGrad
::
GradCopyIndexed
(
XTensor
*
node
,
bool
isEfficent
)
void
XShapeGrad
::
GradCopyIndexed
(
XTensor
*
node
,
bool
isEffic
i
ent
)
{
XLink
&
income
=
node
->
income
;
CheckNTErrors
(
income
.
tailNum
>
0
,
"Wrong input tensor number for CopyIndexed!"
);
...
...
@@ -100,8 +100,15 @@ void XShapeGrad::GradCopyIndexed(XTensor * node, bool isEfficent)
XTensor
*
srcIndex
=
income
.
tails
[
1
];
XTensor
*
tgtIndex
=
income
.
tails
[
2
];
XNoder
::
MakeGrad
(
input
);
_SpreadForCopyIndexed
(
input
->
grad
,
node
->
grad
,
dim
,
srcIndex
,
tgtIndex
,
copyNum
);
if
(
!
isEfficient
||
input
->
isGrad
)
{
XNoder
::
MakeGrad
(
input
);
XTensor
*
tmp
=
NewTensorBufV2
(
input
,
input
->
devID
,
input
->
mem
);
_SpreadForCopyIndexed
(
tmp
,
node
->
grad
,
dim
,
srcIndex
,
tgtIndex
,
copyNum
);
_SumMe
(
input
->
grad
,
tmp
);
DelTensorBuf
(
tmp
);
}
}
/*
...
...
@@ -114,16 +121,23 @@ dE/da = spreadforgather(b)
>> isEfficient - indicates whether the computation is in
an efficient manner
*/
void
XShapeGrad
::
GradGather
(
XTensor
*
node
,
bool
isEfficent
)
void
XShapeGrad
::
GradGather
(
XTensor
*
node
,
bool
isEffic
i
ent
)
{
XLink
&
income
=
node
->
income
;
CheckNTErrors
(
income
.
tailNum
>
0
,
"Wrong input tensor number for Gather!"
);
XTensor
*
input
=
income
.
tails
[
0
];
XTensor
*
index
=
income
.
tails
[
1
];
XNoder
::
MakeGrad
(
input
);
if
(
!
isEfficient
||
input
->
isGrad
)
{
XNoder
::
MakeGrad
(
input
);
_SpreadForGather
(
input
->
grad
,
node
->
grad
,
index
);
XTensor
*
tmp
=
NewTensorBufV2
(
input
,
input
->
devID
,
input
->
mem
);
_SpreadForGather
(
tmp
,
node
->
grad
,
index
);
_SumMe
(
input
->
grad
,
tmp
);
DelTensorBuf
(
tmp
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -131,7 +145,7 @@ void XShapeGrad::GradGather(XTensor * node, bool isEfficent)
/*
gradient computation for DropoutWithIndex function
*/
void
XShapeGrad
::
GradDropoutWithIndex
(
XTensor
*
node
,
bool
isEfficent
)
void
XShapeGrad
::
GradDropoutWithIndex
(
XTensor
*
node
,
bool
isEffic
i
ent
)
{
XLink
&
income
=
node
->
income
;
CheckNTErrors
(
income
.
tailNum
>
0
,
"Wrong input tensor number for DropoutWithIndex!"
);
...
...
@@ -139,28 +153,23 @@ void XShapeGrad::GradDropoutWithIndex(XTensor * node, bool isEfficent)
XTensor
*
input
=
income
.
tails
[
0
];
XTensor
*
index
=
income
.
tails
[
1
];
DTYPE
scale
=
income
.
GetParam
(
0
);
XNoder
::
MakeGrad
(
input
);
//_Identity(node->grad, input->grad);
_CopyValues
(
node
->
grad
,
input
->
grad
);
if
(
!
isEfficient
||
input
->
isGrad
)
{
XNoder
::
MakeGrad
(
input
);
int
order
=
node
->
grad
->
order
;
int
*
dimSize
=
new
int
[
order
]
;
XTensor
*
tmp
=
NewTensorBufV2
(
input
,
input
->
devID
,
input
->
mem
)
;
_CopyValues
(
node
->
grad
,
tmp
)
;
for
(
int
i
=
0
;
i
<
order
;
i
++
)
{
dimSize
[
i
]
=
node
->
grad
->
dimSize
[
i
];
}
tmp
->
Reshape
(
tmp
->
unitNum
);
int
order1
=
1
;
int
*
dimSize1
=
new
int
[
order1
];
dimSize1
[
0
]
=
input
->
grad
->
unitNum
;
input
->
grad
->
Reshape
(
order1
,
dimSize1
);
_DropoutWithIndex
(
node
->
grad
,
index
,
tmp
);
_ScaleAndShiftMe
(
tmp
,
scale
);
_DropoutWithIndex
(
node
->
grad
,
index
,
input
->
grad
);
_ScaleAndShiftMe
(
input
->
grad
,
scale
);
tmp
->
Reshape
(
input
->
order
,
input
->
dimSize
);
_SumMe
(
input
->
grad
,
tmp
);
input
->
grad
->
Reshape
(
order
,
dimSize
);
DelTensorBuf
(
tmp
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -180,7 +189,7 @@ dE/da = split(dE/dc)
>> isEfficient - indicates whether the computation is in
an efficient manner
*/
void
XShapeGrad
::
GradMerge
(
XTensor
*
node
,
bool
isEfficent
)
void
XShapeGrad
::
GradMerge
(
XTensor
*
node
,
bool
isEffic
i
ent
)
{
XLink
&
income
=
node
->
income
;
XTensor
*
input
=
income
.
tails
[
0
];
...
...
@@ -191,62 +200,64 @@ void XShapeGrad::GradMerge(XTensor * node, bool isEfficent)
int
whereToMerge
=
income
.
GetParamInt
(
0
);
int
leadDim
=
income
.
GetParamInt
(
1
);
int
blockSize
=
1
;
int
blockNum
=
1
;
for
(
int
i
=
0
;
i
<
input
->
order
;
i
++
){
if
(
i
<
leadDim
)
blockNum
*=
input
->
dimSize
[
i
];
}
blockSize
=
input
->
GetDataSizeInChar
()
/
blockNum
;
XNoder
::
MakeGrad
(
input
);
if
(
!
isEfficient
||
input
->
isGrad
)
{
XNoder
::
MakeGrad
(
input
);
int
*
dims
=
new
int
[
input
->
order
];
memset
(
dims
,
0
,
sizeof
(
int
)
*
input
->
order
);
for
(
int
i
=
0
,
j
=
0
;
i
<
input
->
order
;
i
++
){
if
(
i
>=
leadDim
){
dims
[
j
++
]
=
input
->
dimSize
[
i
];
int
*
dims
=
new
int
[
input
->
order
];
memset
(
dims
,
0
,
sizeof
(
int
)
*
input
->
order
);
for
(
int
i
=
0
,
j
=
0
;
i
<
input
->
order
;
i
++
)
{
if
(
i
>=
leadDim
)
{
dims
[
j
++
]
=
input
->
dimSize
[
i
];
}
}
}
dims
[
0
]
=
-
dims
[
0
];
XTensor
gradInputSmall
(
input
->
order
-
leadDim
,
dims
,
input
->
dataType
,
input
->
denseRatio
,
input
->
devID
,
input
->
mem
);
dims
[
whereToMerge
-
leadDim
]
*=
dims
[
0
];
XTensor
gradNodeSmall
(
node
->
order
-
leadDim
,
dims
+
leadDim
+
1
,
node
->
dataType
,
node
->
denseRatio
,
node
->
devID
,
node
->
mem
);
/* we can simply split the gradient tensor
if the input is used in merging only */
if
(
input
->
outgo
.
tailNum
==
1
){
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
){
gradNodeSmall
.
data
=
(
char
*
)
node
->
grad
->
data
+
i
*
blockSize
;
gradInputSmall
.
data
=
(
char
*
)
input
->
grad
->
data
+
i
*
blockSize
;
_Split
(
&
gradNodeSmall
,
&
gradInputSmall
,
whereToMerge
-
leadDim
-
1
,
input
->
dimSize
[
leadDim
]);
dims
[
0
]
=
-
dims
[
0
];
XTensor
gradInputSmall
(
input
->
order
-
leadDim
,
dims
,
input
->
dataType
,
input
->
denseRatio
,
input
->
devID
,
input
->
mem
);
dims
[
whereToMerge
-
leadDim
]
*=
dims
[
0
];
XTensor
gradNodeSmall
(
node
->
order
-
leadDim
,
dims
+
leadDim
+
1
,
node
->
dataType
,
node
->
denseRatio
,
node
->
devID
,
node
->
mem
);
int
blockSize
=
1
;
int
blockNum
=
1
;
for
(
int
i
=
0
;
i
<
input
->
order
;
i
++
)
{
if
(
i
<
leadDim
)
blockNum
*=
input
->
dimSize
[
i
];
}
blockSize
=
input
->
GetDataSizeInChar
()
/
blockNum
;
/* we can simply split the gradient tensor
if the input is used in merging only */
if
(
input
->
outgo
.
tailNum
==
1
)
{
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
)
{
gradNodeSmall
.
data
=
(
char
*
)
node
->
grad
->
data
+
i
*
blockSize
;
gradInputSmall
.
data
=
(
char
*
)
input
->
grad
->
data
+
i
*
blockSize
;
_Split
(
&
gradNodeSmall
,
&
gradInputSmall
,
whereToMerge
-
leadDim
-
1
,
input
->
dimSize
[
leadDim
]);
}
}
}
/* a more complicated case is that the input tensor is used for
other operations somewhere else. So we have to do gradient
accumulation after spliting, i.e., we need an additional
SUM operation */
else
{
XTensor
gradInputSmallBuf
(
&
gradInputSmall
);
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
){
gradNodeSmall
.
data
=
(
char
*
)
node
->
grad
->
data
+
i
*
blockSize
;
gradInputSmall
.
data
=
(
char
*
)
input
->
grad
->
data
+
i
*
blockSize
;
_Split
(
&
gradNodeSmall
,
&
gradInputSmallBuf
,
whereToMerge
-
leadDim
-
1
,
input
->
dimSize
[
leadDim
]);
_Sum
(
&
gradInputSmall
,
&
gradInputSmallBuf
,
&
gradInputSmall
);
/* a more complicated case is that the input tensor is used for
other operations somewhere else. So we have to do gradient
accumulation after spliting, i.e., we need an additional
SUM operation */
else
{
XTensor
gradInputSmallBuf
(
&
gradInputSmall
);
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
)
{
gradNodeSmall
.
data
=
(
char
*
)
node
->
grad
->
data
+
i
*
blockSize
;
gradInputSmall
.
data
=
(
char
*
)
input
->
grad
->
data
+
i
*
blockSize
;
_Split
(
&
gradNodeSmall
,
&
gradInputSmallBuf
,
whereToMerge
-
leadDim
-
1
,
input
->
dimSize
[
leadDim
]);
_Sum
(
&
gradInputSmall
,
&
gradInputSmallBuf
,
&
gradInputSmall
);
}
}
}
gradNodeSmall
.
data
=
NULL
;
gradInputSmall
.
data
=
NULL
;
gradNodeSmall
.
data
=
NULL
;
gradInputSmall
.
data
=
NULL
;
delete
[]
dims
;
delete
[]
dims
;
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -274,18 +285,18 @@ void XShapeGrad::GradMergeList(XTensor * node, bool isEfficient)
TensorList
smalls
(
income
.
tailNum
);
TensorList
smallsGrad
(
income
.
tailNum
);
bool
mergeOnly
=
true
;
for
(
int
i
=
0
;
i
<
income
.
tailNum
;
i
++
){
for
(
int
i
=
0
;
i
<
income
.
tailNum
;
i
++
)
{
/* TODO! efficient backpropagate */
XTensor
*
tail
=
income
.
tails
[
i
];
XNoder
::
MakeGrad
(
tail
);
smalls
.
Add
(
tail
);
smallsGrad
.
Add
(
tail
->
grad
);
if
(
i
>
1
){
CheckNTErrors
(
_IsSameShaped
(
last
,
tail
),
"Input tensors must be of the same size!"
);
}
if
(
i
>
1
)
CheckNTErrors
(
_IsSameShaped
(
last
,
tail
),
"Input tensors must be of the same size!"
);
if
(
tail
->
outgo
.
tailNum
>
1
)
if
(
tail
->
outgo
.
tailNum
>
1
)
mergeOnly
=
false
;
last
=
tail
;
...
...
@@ -295,7 +306,7 @@ void XShapeGrad::GradMergeList(XTensor * node, bool isEfficient)
/* we can simply split the gradient tensor into the input tensors
if the inputs are used in merging only */
if
(
mergeOnly
)
if
(
mergeOnly
)
_Split
(
node
->
grad
,
&
smallsGrad
,
whereToMerge
,
smalls
.
count
);
/* a more complicated case is that the input tensors are used for
...
...
@@ -321,7 +332,7 @@ void XShapeGrad::GradMergeList(XTensor * node, bool isEfficient)
last
->
devID
,
last
->
mem
);
/* gradient accumulation for each split */
for
(
int
i
=
0
;
i
<
smalls
.
count
;
i
++
)
{
for
(
int
i
=
0
;
i
<
smalls
.
count
;
i
++
)
{
XTensor
*
inputGrad
=
(
XTensor
*
)
smallsGrad
.
Get
(
i
);
gradSmall
.
data
=
(
char
*
)
gradSplit
.
data
+
i
*
last
->
unitNum
*
last
->
unitSize
;
_Sum
(
inputGrad
,
&
gradSmall
,
inputGrad
);
...
...
@@ -344,17 +355,20 @@ dE/da = reshape(dE/db)
>> isEfficient - indicates whether the computation is in
an efficient manner
*/
void
XShapeGrad
::
GradReshape
(
XTensor
*
node
,
bool
isEfficent
)
void
XShapeGrad
::
GradReshape
(
XTensor
*
node
,
bool
isEffic
i
ent
)
{
XLink
&
income
=
node
->
income
;
CheckNTErrors
(
income
.
tailNum
==
1
,
"Wrong input tensor number for RESHAPE!"
);
XTensor
*
input
=
income
.
tails
[
0
];
XNoder
::
MakeGrad
(
input
);
CheckNTErrors
(
income
.
tailNum
==
1
,
"Wrong input tensor number for MERGE!"
);
if
(
!
isEfficient
||
input
->
isGrad
)
{
XNoder
::
MakeGrad
(
input
);
node
->
grad
->
Reshape
(
input
->
order
,
input
->
dimSize
);
_CopyValues
(
node
->
grad
,
input
->
grad
);
node
->
grad
->
Reshape
(
node
->
order
,
node
->
dimSize
);
node
->
grad
->
Reshape
(
input
->
order
,
input
->
dimSize
);
_CopyValues
(
node
->
grad
,
input
->
grad
);
node
->
grad
->
Reshape
(
node
->
order
,
node
->
dimSize
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -381,22 +395,24 @@ void XShapeGrad::GradSplit(XTensor * node, bool isEfficient)
CheckNTErrors
(
node
->
order
==
input
->
order
+
1
,
"Wrong tensor orders!"
);
CheckNTErrors
(
splitNum
==
node
->
dimSize
[
0
],
"Wrong split number!"
);
XNoder
::
MakeGrad
(
input
);
if
(
!
isEfficient
||
input
->
isGrad
)
{
XNoder
::
MakeGrad
(
input
);
/* we can simply merge the gradient tensor
if the input is used in spliting only */
if
(
input
->
outgo
.
tailNum
==
1
)
_Merge
(
node
->
grad
,
input
->
grad
,
whereToSplit
+
1
,
0
);
/* we can simply merge the gradient tensor
if the input is used in spliting only */
if
(
input
->
outgo
.
tailNum
==
1
)
_Merge
(
node
->
grad
,
input
->
grad
,
whereToSplit
+
1
,
0
);
/* if the tensor is used somewhere else, we need another SUM
for gradient accumulation */
else
{
XTensor
*
inputGradTMP
=
NewTensorBufV2
(
input
,
input
->
devID
,
input
->
mem
);
/* if the tensor is used somewhere else, we need another SUM
for gradient accumulation */
else
{
XTensor
*
inputGradTMP
=
NewTensorBufV2
(
input
,
input
->
devID
,
input
->
mem
);
_Merge
(
node
->
grad
,
inputGradTMP
,
whereToSplit
+
1
,
0
);
_Sum
(
input
->
grad
,
inputGradTMP
,
input
->
grad
);
DelTensorBuf
(
inputGradTMP
);
_Merge
(
node
->
grad
,
inputGradTMP
,
whereToSplit
+
1
,
0
);
_Sum
(
input
->
grad
,
inputGradTMP
,
input
->
grad
);
DelTensorBuf
(
inputGradTMP
);
}
}
node
->
visitMark
=
NODE_FINISHED
;
...
...
@@ -444,14 +460,14 @@ void XShapeGrad::GradSplitListPost(XTensor * node, bool isEfficient)
int
whereToSplit
=
-
1
;
int
splitNum
=
0
;
for
(
int
i
=
0
;
i
<
outgo
.
tailNum
;
i
++
)
{
for
(
int
i
=
0
;
i
<
outgo
.
tailNum
;
i
++
)
{
XTensor
*
parent
=
(
XTensor
*
)
outgo
.
tails
[
i
];
XLink
&
income
=
parent
->
income
;
if
(
income
.
typeID
==
SHAPE_SPLIT_LIST
)
{
if
(
income
.
typeID
==
SHAPE_SPLIT_LIST
)
{
int
w
=
income
.
GetParamInt
(
0
);
int
splitID
=
income
.
GetParamInt
(
1
);
if
(
whereToSplit
<
0
)
if
(
whereToSplit
<
0
)
whereToSplit
=
w
;
splitNum
++
;
...
...
@@ -463,24 +479,26 @@ void XShapeGrad::GradSplitListPost(XTensor * node, bool isEfficient)
}
}
XNoder
::
MakeGrad
(
node
);
if
(
!
isEfficient
||
node
->
isGrad
)
{
XNoder
::
MakeGrad
(
node
);
/* we can simply merge the gradient tensor
if the node is used in spliting only */
if
(
outgo
.
tailNum
==
splitNum
)
{
_Merge
(
&
splits
,
node
->
grad
,
whereToSplit
);
}
/* we can simply merge the gradient tensor
if the node is used in spliting only */
if
(
outgo
.
tailNum
==
splitNum
)
{
_Merge
(
&
splits
,
node
->
grad
,
whereToSplit
);
}
/* if the tensor is used as input to other nodes
somewhere else, we need another SUM for gradient
accumulation */
else
{
XTensor
*
nodeGradTMP
=
NewTensorBufV2
(
node
,
node
->
devID
,
node
->
mem
);
/* if the tensor is used as input to other nodes
somewhere else, we need another SUM for gradient
accumulation */
else
{
XTensor
*
nodeGradTMP
=
NewTensorBufV2
(
node
,
node
->
devID
,
node
->
mem
);
_Merge
(
&
splits
,
nodeGradTMP
,
whereToSplit
+
1
);
_Sum
(
node
->
grad
,
nodeGradTMP
,
node
->
grad
);
DelTensorBuf
(
nodeGradTMP
);
_Merge
(
&
splits
,
nodeGradTMP
,
whereToSplit
+
1
);
_Sum
(
node
->
grad
,
nodeGradTMP
,
node
->
grad
);
DelTensorBuf
(
nodeGradTMP
);
}
}
}
...
...
@@ -501,19 +519,23 @@ void XShapeGrad::GradTranspose(XTensor * node, bool isEfficient)
XTensor
*
output
=
node
;
XTensor
*
input
=
income
.
tails
[
0
];
XTensor
*
b
=
NewTensorBufV2
(
input
,
input
->
devID
,
input
->
mem
);
XNoder
::
MakeGrad
(
input
);
int
i
=
income
.
GetParamInt
(
0
);
int
j
=
income
.
GetParamInt
(
1
);
CheckNTErrors
(
input
->
order
>
i
&&
i
>=
0
,
"index of dimension is out of scope!"
);
CheckNTErrors
(
input
->
order
>
j
&&
j
>=
0
,
"index of dimension is out of scope!"
);
if
(
!
isEfficient
||
input
->
isGrad
)
{
XNoder
::
MakeGrad
(
input
);
_Transpose
(
output
->
grad
,
b
,
i
,
j
);
_Sum
(
input
->
grad
,
b
,
input
->
grad
);
DelTensorBuf
(
b
);
int
i
=
income
.
GetParamInt
(
0
);
int
j
=
income
.
GetParamInt
(
1
);
CheckNTErrors
(
input
->
order
>
i
&&
i
>=
0
,
"index of dimension is out of scope!"
);
CheckNTErrors
(
input
->
order
>
j
&&
j
>=
0
,
"index of dimension is out of scope!"
);
XTensor
*
tmp
=
NewTensorBufV2
(
input
,
input
->
devID
,
input
->
mem
);
_Transpose
(
output
->
grad
,
tmp
,
i
,
j
);
_Sum
(
input
->
grad
,
tmp
,
input
->
grad
);
DelTensorBuf
(
tmp
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
@@ -535,7 +557,6 @@ void XShapeGrad::GradUnsqueeze(XTensor * node, bool isEfficient)
XTensor
*
output
=
node
;
XTensor
*
input
=
income
.
tails
[
0
];
XNoder
::
MakeGrad
(
input
);
int
dim
=
income
.
GetParamInt
(
0
);
int
dSize
=
income
.
GetParamInt
(
1
);
...
...
@@ -543,12 +564,16 @@ void XShapeGrad::GradUnsqueeze(XTensor * node, bool isEfficient)
CheckNTErrors
(
dSize
==
output
->
GetDim
(
dim
),
"Wrong dim size for UNSQUEEZE!"
);
CheckNTErrors
(
output
->
unitNum
=
input
->
unitNum
*
dSize
,
"Wrong tensor size!"
);
XTensor
*
g
=
NewTensorBufV2
(
input
->
grad
,
input
->
devID
,
input
->
mem
);
_ReduceSum
(
output
->
grad
,
g
,
dim
);
_Sum
(
input
->
grad
,
g
,
input
->
grad
);
DelTensorBuf
(
g
);
if
(
!
isEfficient
||
input
->
isGrad
)
{
XNoder
::
MakeGrad
(
input
);
XTensor
*
tmp
=
NewTensorBufV2
(
input
->
grad
,
input
->
devID
,
input
->
mem
);
_ReduceSum
(
output
->
grad
,
tmp
,
dim
);
_Sum
(
input
->
grad
,
tmp
,
input
->
grad
);
DelTensorBuf
(
tmp
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
...
...
source/network/XNet.cpp
查看文件 @
18a08a65
...
...
@@ -316,7 +316,6 @@ void XNet::ClearGrad(XTensor * node)
}
if
(
finished
){
//fprintf(stderr, "del %d %ld\n", node->id, node->grad->unitNum);
delete
node
->
grad
;
node
->
grad
=
NULL
;
}
...
...
source/tensor/core/arithmetic/MatrixMul.cpp
查看文件 @
18a08a65
...
...
@@ -62,7 +62,7 @@ void _MatrixMul(const XTensor * a, MATRIX_TRANS_TYPE transposedA,
/* we transform a higher order tensor to a matrix to kill the number
of calls of matrix multiplication */
if
(
transposedA
==
X_NOTRANS
&&
a
->
order
>
2
&&
b
->
order
==
2
)
{
if
(
transposedA
==
X_NOTRANS
&&
a
->
order
>
2
&&
b
->
order
==
2
)
{
int
ncolA
=
a
->
dimSize
[
a
->
order
-
1
];
int
ncolC
=
c
->
dimSize
[
c
->
order
-
1
];
XTensor
*
a2
=
NewTensor2DV2
(
a
->
unitNum
/
ncolA
,
-
ncolA
,
a
->
dataType
,
a
->
devID
,
a
->
mem
);
...
...
source/tensor/core/math/Compare.cpp
查看文件 @
18a08a65
...
...
@@ -199,8 +199,8 @@ void funcName(const XTensor &a, const XTensor &b, XTensor c)
}
#ifdef USE_CUDA
_SIMPLE_MAX_MIN_FUNCTION
(
_Max
,
_CudaMax
,
max
)
_SIMPLE_MAX_MIN_FUNCTION
(
_Min
,
_CudaMin
,
min
)
_SIMPLE_MAX_MIN_FUNCTION
(
_Max
,
_CudaMax
,
MAX
)
_SIMPLE_MAX_MIN_FUNCTION
(
_Min
,
_CudaMin
,
MIN
)
#else
_SIMPLE_MAX_MIN_FUNCTION
(
_Max
,
max
)
_SIMPLE_MAX_MIN_FUNCTION
(
_Min
,
min
)
...
...
source/tensor/core/shape/Split.h
查看文件 @
18a08a65
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24
*/
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24
*/
#ifndef __SPLIT_H__
#define __SPLIT_H__
...
...
source/tensor/core/shape/Stack.cpp
查看文件 @
18a08a65
...
...
@@ -85,7 +85,7 @@ XTensor Stack(const TensorList &smalls, int dim)
{
int
count
=
smalls
.
count
;
CheckNTErrors
(
count
>
0
,
"Empty list!"
);
CheckNTErrors
(
dim
>=
0
,
"Illegal dimension to
concatenate
!"
);
CheckNTErrors
(
dim
>=
0
,
"Illegal dimension to
Stack
!"
);
XTensor
*
tensor
=
smalls
.
GetItem
(
0
);
int
order
=
tensor
->
order
+
1
;
...
...
@@ -95,7 +95,7 @@ XTensor Stack(const TensorList &smalls, int dim)
if
(
i
<
dim
)
dimSize
[
i
]
=
tensor
->
GetDim
(
i
);
else
if
(
i
>
dim
)
dimSize
[
i
]
=
tensor
->
GetDim
(
i
);
dimSize
[
i
]
=
tensor
->
GetDim
(
i
-
1
);
else
if
(
i
==
dim
)
dimSize
[
i
]
=
count
;
}
...
...
@@ -149,7 +149,7 @@ void Stack(const TensorList &smalls, XTensor &t, int dim)
{
int
count
=
smalls
.
count
;
CheckNTErrors
(
count
>
0
,
"Empty list!"
);
CheckNTErrors
(
dim
>=
0
,
"Illegal dimension to
concatenate
!"
);
CheckNTErrors
(
dim
>=
0
,
"Illegal dimension to
Stack
!"
);
if
(
!
t
.
isInit
||
!
CheckStackShape
(
smalls
,
t
,
dim
))
{
XTensor
*
tensor
=
smalls
.
GetItem
(
0
);
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论