Commit 7809ed05 by xuchen

Merge branch 'xuchen' into xiaotong-working

parents f4be1882 03a9836e
...@@ -49,7 +49,7 @@ void XFuncGrad::MakeGrad(XTensor * node, bool isEfficient) ...@@ -49,7 +49,7 @@ void XFuncGrad::MakeGrad(XTensor * node, bool isEfficient)
else if(operID == FUNC_LOGSOFTMAX){ else if(operID == FUNC_LOGSOFTMAX){
int leadDim = income.GetParamInt(0); int leadDim = income.GetParamInt(0);
CheckNTErrors(leadDim >= 0 && leadDim < input->order, "wrong leading dimension in logsoftmax!"); CheckNTErrors(leadDim >= 0 && leadDim < input->order, "wrong leading dimension in logsoftmax!");
_LogSoftmaxBackward(NULL, output, input, output->grad, input->grad, leadDim, NOLOSS); _LogSoftmaxBackward(NULL, output, input, output->grad, input->grad, NULL, leadDim, NOLOSS);
} }
else if(operID == FUNC_RECTIFY) else if(operID == FUNC_RECTIFY)
_RectifyBackward(NULL, output, input, output->grad, input->grad, NOLOSS); _RectifyBackward(NULL, output, input, output->grad, input->grad, NOLOSS);
...@@ -58,7 +58,7 @@ void XFuncGrad::MakeGrad(XTensor * node, bool isEfficient) ...@@ -58,7 +58,7 @@ void XFuncGrad::MakeGrad(XTensor * node, bool isEfficient)
else if(operID == FUNC_SOFTMAX){ else if(operID == FUNC_SOFTMAX){
int leadDim = income.GetParamInt(0); int leadDim = income.GetParamInt(0);
CheckNTErrors(leadDim >= 0 && leadDim < input->order, "wrong leading dimension in softmax!"); CheckNTErrors(leadDim >= 0 && leadDim < input->order, "wrong leading dimension in softmax!");
_SoftmaxBackward(NULL, output, input, output->grad, input->grad, leadDim, NOLOSS); _SoftmaxBackward(NULL, output, input, output->grad, input->grad, NULL, leadDim, NOLOSS);
} }
else{ else{
ShowNTErrors("Wrong activation function type!"); ShowNTErrors("Wrong activation function type!");
......
...@@ -42,7 +42,7 @@ compute dE/dx for a given function y = f(x) ...@@ -42,7 +42,7 @@ compute dE/dx for a given function y = f(x)
>> lossName - name of the loss, e.g., cross entropy >> lossName - name of the loss, e.g., cross entropy
*/ */
void XLossGrad::Compute(XTensor * gold, XTensor * y, XTensor * x, void XLossGrad::Compute(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx, XTensor * padding,
int funcID, void * params, int funcID, void * params,
LOSS_FUNCTION_NAME lossName) LOSS_FUNCTION_NAME lossName)
{ {
...@@ -58,7 +58,7 @@ void XLossGrad::Compute(XTensor * gold, XTensor * y, XTensor * x, ...@@ -58,7 +58,7 @@ void XLossGrad::Compute(XTensor * gold, XTensor * y, XTensor * x,
} }
else if(funcID == FUNC_LOGSOFTMAX){ else if(funcID == FUNC_LOGSOFTMAX){
int leadDim = *(int*)params; int leadDim = *(int*)params;
_LogSoftmaxBackward(gold, y, x, dedy, dedx, leadDim, lossName); _LogSoftmaxBackward(gold, y, x, dedy, dedx, padding, leadDim, lossName);
} }
else if(funcID == FUNC_RECTIFY){ else if(funcID == FUNC_RECTIFY){
_RectifyBackward(gold, y, x, dedy, dedx, lossName); _RectifyBackward(gold, y, x, dedy, dedx, lossName);
...@@ -67,7 +67,7 @@ void XLossGrad::Compute(XTensor * gold, XTensor * y, XTensor * x, ...@@ -67,7 +67,7 @@ void XLossGrad::Compute(XTensor * gold, XTensor * y, XTensor * x,
_SigmoidBackward(gold, y, x, dedy, dedx, lossName); _SigmoidBackward(gold, y, x, dedy, dedx, lossName);
}else if(funcID == FUNC_SOFTMAX){ }else if(funcID == FUNC_SOFTMAX){
int leadDim = *(int*)params; int leadDim = *(int*)params;
_SoftmaxBackward(gold, y, x, dedy, dedx, leadDim, lossName); _SoftmaxBackward(gold, y, x, dedy, dedx, padding, leadDim, lossName);
} }
else{ else{
ShowNTErrors("wrong function found when call the backward process!"); ShowNTErrors("wrong function found when call the backward process!");
...@@ -83,10 +83,12 @@ compute dE/dy for variable y and error(loss) function E ...@@ -83,10 +83,12 @@ compute dE/dy for variable y and error(loss) function E
>> lossName - name of the loss, e.g., cross entropy >> lossName - name of the loss, e.g., cross entropy
*/ */
void XLossGrad::Compute(XTensor * gold, XTensor * y, void XLossGrad::Compute(XTensor * gold, XTensor * y,
XTensor * dedy, XTensor * dedy, XTensor * padding,
LOSS_FUNCTION_NAME lossName) LOSS_FUNCTION_NAME lossName)
{ {
_LossBackward(dedy, gold, y, lossName); //_LossBackward(dedy, gold, y, lossName);
if(lossName == CROSSENTROPY)
_CrossEntropyBackward(dedy, y, gold, NULL, padding);
} }
} }
\ No newline at end of file
...@@ -36,13 +36,13 @@ class XLossGrad ...@@ -36,13 +36,13 @@ class XLossGrad
public: public:
/* compute dE/dx for a given function y = f(x) */ /* compute dE/dx for a given function y = f(x) */
void Compute(XTensor * gold, XTensor * y, XTensor * x, void Compute(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx, XTensor * padding,
int funcID, void * params, int funcID, void * params,
LOSS_FUNCTION_NAME lossName); LOSS_FUNCTION_NAME lossName);
/* compute dE/dy for variable y and error(loss) function E */ /* compute dE/dy for variable y and error(loss) function E */
void Compute(XTensor * gold, XTensor * y, void Compute(XTensor * gold, XTensor * y,
XTensor * dedy, XTensor * dedy, XTensor * padding,
LOSS_FUNCTION_NAME lossName); LOSS_FUNCTION_NAME lossName);
}; };
......
...@@ -469,8 +469,6 @@ void XShapeGrad::GradTranspose(XTensor * node, bool isEfficient) ...@@ -469,8 +469,6 @@ void XShapeGrad::GradTranspose(XTensor * node, bool isEfficient)
DelTensorBuf(b); DelTensorBuf(b);
node->visitMark = NODE_FINISHED; node->visitMark = NODE_FINISHED;
delete b;
} }
/* /*
......
...@@ -55,7 +55,7 @@ void XNetClearAll() ...@@ -55,7 +55,7 @@ void XNetClearAll()
XNet::XNet() XNet::XNet()
{ {
nodes.Clear(); nodes.Clear();
isGradEfficient = true; isGradEfficient = false;
} }
/* de-constructor */ /* de-constructor */
...@@ -86,7 +86,31 @@ void XNet::Backward(XTensor &root, XTensor &gold, LOSS_FUNCTION_NAME loss) ...@@ -86,7 +86,31 @@ void XNet::Backward(XTensor &root, XTensor &gold, LOSS_FUNCTION_NAME loss)
XList golds(1); XList golds(1);
golds.Add(&gold); golds.Add(&gold);
Backward(roots, golds, loss); XList paddings(1);
paddings.Add(NULL);
Backward(roots, golds, paddings, loss);
}
/*
backward propagation to obtain gradient wrt. the loss/error function
>> root - root node (output) of the network
>> gold - gold standard for the output
>> padding - specify a target value that is ignored and does not contribute to the loss computation
>> loss - name of loss function
*/
void XNet::Backward(XTensor &root, XTensor &gold, XTensor &padding, LOSS_FUNCTION_NAME loss)
{
XList roots(1);
roots.Add(&root);
XList golds(1);
golds.Add(&gold);
XList paddings(1);
paddings.Add(&padding);
Backward(roots, golds, paddings, loss);
} }
/* /*
...@@ -102,7 +126,10 @@ void XNet::Backward(XTensor &root, LOSS_FUNCTION_NAME loss) ...@@ -102,7 +126,10 @@ void XNet::Backward(XTensor &root, LOSS_FUNCTION_NAME loss)
XList golds(1); XList golds(1);
golds.Add(NULL); golds.Add(NULL);
Backward(roots, golds, loss); XList paddings(1);
paddings.Add(NULL);
Backward(roots, golds, paddings, loss);
} }
/* /*
...@@ -110,9 +137,10 @@ backward propagation to obtain gradient wrt. the loss/error function ...@@ -110,9 +137,10 @@ backward propagation to obtain gradient wrt. the loss/error function
with a number of root nodes with a number of root nodes
>> root - a list of root nodes (output) of the network >> root - a list of root nodes (output) of the network
>> gold - a list of gold standard for the output >> gold - a list of gold standard for the output
>> padding - specify a target value that is ignored
>> loss - name of loss function >> loss - name of loss function
*/ */
void XNet::Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss) void XNet::Backward(XList &roots, XList &golds, XList &paddings, LOSS_FUNCTION_NAME loss)
{ {
Traverse(roots); Traverse(roots);
...@@ -131,6 +159,7 @@ void XNet::Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss) ...@@ -131,6 +159,7 @@ void XNet::Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss)
for(int i = 0; i < roots.count; i++){ for(int i = 0; i < roots.count; i++){
XTensor * root = (XTensor*)roots.Get(i); XTensor * root = (XTensor*)roots.Get(i);
XTensor * gold = (XTensor*)golds.Get(i); XTensor * gold = (XTensor*)golds.Get(i);
XTensor * padding = (XTensor*)paddings.Get(i);
XLink &income = root->income; XLink &income = root->income;
int funcID = income.typeID; int funcID = income.typeID;
void * params = income.params; void * params = income.params;
...@@ -139,15 +168,21 @@ void XNet::Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss) ...@@ -139,15 +168,21 @@ void XNet::Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss)
Note that we do not need to obtain dE/dy here because it is no use in the Note that we do not need to obtain dE/dy here because it is no use in the
folloing process of back-propagation */ folloing process of back-propagation */
if(gold != NULL && income.tailNum == 1 && (funcID & FUNCTION_BASE)){ if(gold != NULL && income.tailNum == 1 && (funcID & FUNCTION_BASE)){
if(funcID == FUNC_LOGSOFTMAX || funcID == FUNC_SOFTMAX) {
XTensor * x = income.tails[0]; XTensor * x = income.tails[0];
XNoder::MakeGrad(x); XNoder::MakeGrad(x);
lossGrad.Compute(gold, root, x, NULL, x->grad, funcID, params, loss); lossGrad.Compute(gold, root, x, NULL, x->grad, padding, funcID, params, loss);
root->visitMark = NODE_FINISHED; root->visitMark = NODE_FINISHED;
} }
else {
XNoder::MakeGrad(root);
lossGrad.Compute(gold, root, root->grad, padding, loss);
}
}
/* we compuate dE/dy (y is the output) if no predefined activation function is used */ /* we compuate dE/dy (y is the output) if no predefined activation function is used */
else{ else{
XNoder::MakeGrad(root); XNoder::MakeGrad(root);
lossGrad.Compute(gold, root, root->grad, loss); lossGrad.Compute(gold, root, root->grad, NULL, loss);
} }
} }
...@@ -178,16 +213,35 @@ void XNet::Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss) ...@@ -178,16 +213,35 @@ void XNet::Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss)
/* /*
backward propagation to obtain gradient backward propagation to obtain gradient
with a number of root nodes with a number of root nodes
>> root - a list of root nodes (output) of the network >> roots - a list of root nodes (output) of the network
>> loss - name of loss function >> loss - name of loss function
*/ */
void XNet::Backward(XList &roots, LOSS_FUNCTION_NAME loss) void XNet::Backward(XList &roots, LOSS_FUNCTION_NAME loss)
{ {
XList golds(roots.count); XList golds(roots.count);
for(int i = 0; i < roots.count; i++) XList paddings(roots.count);
for(int i = 0; i < roots.count; i++) {
golds.Add(NULL); golds.Add(NULL);
paddings.Add(NULL);
}
Backward(roots, golds, paddings, loss);
}
/*
backward propagation to obtain gradient
with a number of root nodes
>> roots - a list of root nodes (output) of the network
>> golds - a list of gold standard for the output
>> loss - name of loss function
*/
void XNet::Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss)
{
XList paddings(roots.count);
for(int i = 0; i < roots.count; i++)
paddings.Add(NULL);
Backward(roots, golds, loss); Backward(roots, golds, paddings, loss);
} }
/* /*
......
...@@ -62,17 +62,24 @@ struct XNet ...@@ -62,17 +62,24 @@ struct XNet
/* backward propagation to obtain gradient wrt. the loss/error function */ /* backward propagation to obtain gradient wrt. the loss/error function */
void Backward(XTensor &root, XTensor &gold, LOSS_FUNCTION_NAME loss = NOLOSS); void Backward(XTensor &root, XTensor &gold, LOSS_FUNCTION_NAME loss = NOLOSS);
/* backward propagation to obtain gradient wrt. the loss/error function */
void Backward(XTensor &root, XTensor &gold, XTensor &padding, LOSS_FUNCTION_NAME loss = NOLOSS);
/* backward propagation to obtain gradient */ /* backward propagation to obtain gradient */
void Backward(XTensor &root, LOSS_FUNCTION_NAME loss = NOLOSS); void Backward(XTensor &root, LOSS_FUNCTION_NAME loss = NOLOSS);
/* backward propagation to obtain gradient wrt. the loss/error function /* backward propagation to obtain gradient wrt. the loss/error function
with a number of root nodes */ with a number of root nodes */
void Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss = NOLOSS); void Backward(XList &roots, XList &golds, XList &paddings, LOSS_FUNCTION_NAME loss = NOLOSS);
/* backward propagation to obtain gradient /* backward propagation to obtain gradient
with a number of root nodes */ with a number of root nodes */
void Backward(XList &roots, LOSS_FUNCTION_NAME loss = NOLOSS); void Backward(XList &roots, LOSS_FUNCTION_NAME loss = NOLOSS);
/* backward propagation to obtain gradient
with a number of root nodes */
void Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss = NOLOSS);
/* backward computation for a given node */ /* backward computation for a given node */
void BackwardNode(XTensor * node, bool isEfficent = false); void BackwardNode(XTensor * node, bool isEfficent = false);
......
...@@ -514,6 +514,8 @@ void Train(const char * train, bool isShuffled, FNNModel &model) ...@@ -514,6 +514,8 @@ void Train(const char * train, bool isShuffled, FNNModel &model)
if(isEnd) if(isEnd)
break; break;
Test(testFN, outputFN, model);
} }
double elapsed = GetClockSec() - startT; double elapsed = GetClockSec() - startT;
...@@ -890,7 +892,7 @@ void Backward(XTensor inputs[], XTensor &output, XTensor &gold, LOSS_FUNCTION_NA ...@@ -890,7 +892,7 @@ void Backward(XTensor inputs[], XTensor &output, XTensor &gold, LOSS_FUNCTION_NA
/* for y = softmax(s), we get dE/ds /* for y = softmax(s), we get dE/ds
where E is the error function (define by loss) */ where E is the error function (define by loss) */
_LogSoftmaxBackward(&gold, &y, &s, NULL, &deds, 1, loss); _LogSoftmaxBackward(&gold, &y, &s, NULL, &deds, NULL, 1, loss);
/* for s = x * w, we get /* for s = x * w, we get
dE/w_{i,j} = dE/ds_j * ds/dw_{i,j} dE/w_{i,j} = dE/ds_j * ds/dw_{i,j}
......
...@@ -68,9 +68,10 @@ void T2TEmbedder::InitModel(int argc, char ** argv, int myDevID, XMem * myMem) ...@@ -68,9 +68,10 @@ void T2TEmbedder::InitModel(int argc, char ** argv, int myDevID, XMem * myMem)
} }
/* /*
make positional embeddings (of size eSize * length make positional embeddings (of size eSize * length)
eSize - embedding size >> eSize - embedding size
length - length of the sequenc >> d - dimension size of the hidden layers
>> length - length of the sequence
*/ */
void T2TEmbedder::MakePosEmbedding(int eSize, int d, int length) void T2TEmbedder::MakePosEmbedding(int eSize, int d, int length)
{ {
...@@ -114,15 +115,15 @@ make the network ...@@ -114,15 +115,15 @@ make the network
*/ */
XTensor T2TEmbedder::Make(XTensor &input) XTensor T2TEmbedder::Make(XTensor &input)
{ {
CheckNTErrors(input.GetDim(-1) == vSize, "Wrong vocabulary size!"); //CheckNTErrors(input.GetDim(-1) == vSize, "Wrong vocabulary size!");
CheckNTErrors(input.order > 1, "Wrong input tensor size!"); CheckNTErrors(input.order > 1, "Wrong input tensor size!");
CheckNTErrors(input.dimSize[input.order - 2] < maxLength, "The sequence is too long!"); CheckNTErrors(input.dimSize[input.order - 1] < maxLength, "The sequence is too long!");
CheckNTErrors(vSize > 0, "set vocabulary size by \"-vsize\""); CheckNTErrors(vSize > 0, "set vocabulary size by \"-vsize\"");
CheckNTErrors(eSize > 0, "set embedding size by \"-esize\""); CheckNTErrors(eSize > 0, "set embedding size by \"-esize\"");
int dims[MAX_TENSOR_DIM_NUM]; int dims[MAX_TENSOR_DIM_NUM];
memcpy(dims, input.dimSize, input.order * sizeof(int)); memcpy(dims, input.dimSize, input.order * sizeof(int));
dims[input.order - 1] = eSize; dims[input.order] = eSize;
XTensor wordEmbedding; XTensor wordEmbedding;
XTensor posEmbedding; XTensor posEmbedding;
...@@ -138,7 +139,8 @@ XTensor T2TEmbedder::Make(XTensor &input) ...@@ -138,7 +139,8 @@ XTensor T2TEmbedder::Make(XTensor &input)
/* we make positional embeddings first */ /* we make positional embeddings first */
//if(!match){ //if(!match){
if(true){ if(true){
InitTensor(&posEmbedding, input.order, dims, X_FLOAT, 1.0F, devID, mem); InitTensor(&posEmbedding, input.order + 1, dims, X_FLOAT, 1.0F, devID, mem);
XTensor * posTMP = NewTensorBuf(2, dims + 1, X_FLOAT, 1.0F, devID, mem); XTensor * posTMP = NewTensorBuf(2, dims + 1, X_FLOAT, 1.0F, devID, mem);
_CopyValues(&posEmbeddingBase, 0, posTMP->unitNum, posTMP, 0); _CopyValues(&posEmbeddingBase, 0, posTMP->unitNum, posTMP, 0);
...@@ -148,7 +150,9 @@ XTensor T2TEmbedder::Make(XTensor &input) ...@@ -148,7 +150,9 @@ XTensor T2TEmbedder::Make(XTensor &input)
} }
/* then we make word embeddings */ /* then we make word embeddings */
wordEmbedding = Linear(MMul(input, w), (float)sqrt((float)eSize)); //wordEmbedding = Linear(MMul(input, w), (float)sqrt((float)eSize));
wordEmbedding = Gather(w, input);
wordEmbedding = Linear(wordEmbedding, (float)sqrt((float)eSize));
/* we sum over the two embeddings */ /* we sum over the two embeddings */
return wordEmbedding + posEmbedding; return wordEmbedding + posEmbedding;
......
...@@ -121,13 +121,21 @@ void T2TModel::MakeLM(XTensor &input, XTensor &output, XTensor &padding, bool is ...@@ -121,13 +121,21 @@ void T2TModel::MakeLM(XTensor &input, XTensor &output, XTensor &padding, bool is
XTensor encoding; XTensor encoding;
/* generate mask to see "previous" words only */ /* generate mask to see "previous" words only */
int len = input.GetDim(input.order - 2); //int len = input.GetDim(input.order - 2);
int * dims = new int[input.order + 1]; //int * dims = new int[input.order + 1];
//for(int i = 0; i < input.order; i++)
// dims[i + 1] = input.GetDim(i);
//dims[0] = nhead;
//dims[input.order] = len;
//XTensor mask(input.order + 1, dims, X_FLOAT, 1.0F, input.devID, input.mem);
int len = input.GetDim(input.order - 1);
int * dims = new int[input.order + 2];
for(int i = 0; i < input.order; i++) for(int i = 0; i < input.order; i++)
dims[i + 1] = input.GetDim(i); dims[i + 1] = input.GetDim(i);
dims[0] = nhead; dims[0] = nhead;
dims[input.order] = len; dims[input.order + 1] = len;
XTensor mask(input.order + 1, dims, X_FLOAT, 1.0F, input.devID, input.mem); XTensor mask(input.order + 2, dims, X_FLOAT, 1.0F, padding.devID, padding.mem);
/* a upper triangular matrix where the cells of the upper triangular are set to -1e-9. /* a upper triangular matrix where the cells of the upper triangular are set to -1e-9.
this matrix can be used to prevent the attention to current or following words in this matrix can be used to prevent the attention to current or following words in
...@@ -148,16 +156,16 @@ void T2TModel::MakeLM(XTensor &input, XTensor &output, XTensor &padding, bool is ...@@ -148,16 +156,16 @@ void T2TModel::MakeLM(XTensor &input, XTensor &output, XTensor &padding, bool is
dimsPadding[i + 1] = padding2->GetDim(i); dimsPadding[i + 1] = padding2->GetDim(i);
dimsPadding[0] = nhead; dimsPadding[0] = nhead;
XTensor * padding3 = NewTensorBuf(padding.order + 2, dimsPadding, padding.dataType, //XTensor * padding3 = NewTensorBuf(padding.order + 2, dimsPadding, padding.dataType,
padding.denseRatio, padding.devID, padding.mem); // padding.denseRatio, padding.devID, padding.mem);
//
/* mask of the padding */ ///* mask of the padding */
_Unsqueeze(&padding, padding2, padding.order - 1, padding.GetDim(-1)); //_Unsqueeze(&padding, padding2, padding.order - 1, padding.GetDim(-1));
_Unsqueeze(padding2, padding3, 0, nhead); //_Unsqueeze(padding2, padding3, 0, nhead);
//
_ScaleAndShiftMe(padding3, 1e9F, -1e9F); //_ScaleAndShiftMe(padding3, 1e9F, -1e9F);
//
//_Sum(&mask, padding3, &mask); ////_Sum(&mask, padding3, &mask);
encoding = MakeEncoder(input, mask, isTraining); encoding = MakeEncoder(input, mask, isTraining);
outputLayer.Make(encoding, output); outputLayer.Make(encoding, output);
...@@ -165,8 +173,8 @@ void T2TModel::MakeLM(XTensor &input, XTensor &output, XTensor &padding, bool is ...@@ -165,8 +173,8 @@ void T2TModel::MakeLM(XTensor &input, XTensor &output, XTensor &padding, bool is
delete[] dims; delete[] dims;
delete[] dimsPadding; delete[] dimsPadding;
//DelTensorBuf(padding3);
DelTensorBuf(padding2); DelTensorBuf(padding2);
DelTensorBuf(padding3);
} }
/* /*
...@@ -235,8 +243,8 @@ void T2TModel::MakeMT(XTensor &inputEnc, XTensor &inputDec, XTensor &output, XTe ...@@ -235,8 +243,8 @@ void T2TModel::MakeMT(XTensor &inputEnc, XTensor &inputDec, XTensor &output, XTe
delete[] dims; delete[] dims;
delete[] dimsPadding; delete[] dimsPadding;
DelTensorBuf(padding2);
DelTensorBuf(padding3); DelTensorBuf(padding3);
DelTensorBuf(padding2);
} }
/* /*
......
...@@ -93,7 +93,8 @@ void T2TOutput::Make(XTensor &input, XTensor &output) ...@@ -93,7 +93,8 @@ void T2TOutput::Make(XTensor &input, XTensor &output)
{ {
XTensor &x = input; XTensor &x = input;
output = LogSoftmax(MMul(x, w), -1); //output = LogSoftmax(MMul(x, w), -1);
output = Softmax(MMul(x, w), -1);
} }
} }
...@@ -103,6 +103,10 @@ public: ...@@ -103,6 +103,10 @@ public:
/* indicates whether we use adam */ /* indicates whether we use adam */
bool useAdam; bool useAdam;
int validStep;
int curEpoch;
/* hyper parameters of adam*/ /* hyper parameters of adam*/
float adamBeta1; float adamBeta1;
float adamBeta2; float adamBeta2;
...@@ -131,7 +135,7 @@ public: ...@@ -131,7 +135,7 @@ public:
/* number of batches on which we do model update */ /* number of batches on which we do model update */
int updateStep; int updateStep;
/* indicates whether we double the </s> symble for the output of lms */ /* indicates whether we double the </s> symbol for the output of lms */
bool isDoubledEnd; bool isDoubledEnd;
/* indicates whether we use batchsize = max * sc /* indicates whether we use batchsize = max * sc
...@@ -150,7 +154,7 @@ public: ...@@ -150,7 +154,7 @@ public:
void Init(int argc, char ** argv); void Init(int argc, char ** argv);
/* train the model */ /* train the model */
void Train(const char * fn, const char * validFN, const char * modelFN, T2TModel * model); bool Train(const char * fn, const char * validFN, const char * modelFN, T2TModel * model);
/* test the model */ /* test the model */
void Test(const char * fn, const char * ofn, T2TModel * model); void Test(const char * fn, const char * ofn, T2TModel * model);
...@@ -172,7 +176,28 @@ public: ...@@ -172,7 +176,28 @@ public:
int * seqs, int * seqs,
int vsEnc, int vsDec, int sBatch, int wBatch, int vsEnc, int vsDec, int sBatch, int wBatch,
bool isSorted, int &wCount, bool isSorted, int &wCount,
int devID, XMem * mem); int devID, XMem * mem,
bool isTraining);
/* load a batch of sequences (for language modeling) */
int LoadBatchLM(FILE * file,
XTensor * batchEnc, XTensor * paddingEnc,
XTensor * batchDec, XTensor * paddingDec,
XTensor * gold,
int * seqs, int vs, int sBatch, int wBatch,
bool isSorted, int &wCount,
int devID, XMem * mem,
bool isTraining);
/* load a batch of sequences (for machine translation) */
int LoadBatchMT(FILE * file,
XTensor * batchEnc, XTensor * paddingEnc,
XTensor * batchDec, XTensor * paddingDec,
XTensor * gold,
int * seqs, int vsEnc, int vsDec, int sBatch, int wBatch,
bool isSorted, int &wCount,
int devID, XMem * mem,
bool isTraining);
/* load a batch of sequences (for language modeling) */ /* load a batch of sequences (for language modeling) */
int LoadBatchLM(FILE * file, int LoadBatchLM(FILE * file,
......
...@@ -25,6 +25,8 @@ ...@@ -25,6 +25,8 @@
#include "T2TUtility.h" #include "T2TUtility.h"
#include "T2TTrainer.h" #include "T2TTrainer.h"
#include "../../tensor/XDevice.h" #include "../../tensor/XDevice.h"
#include "../../tensor/XUtility.h"
#include "../../tensor/XGlobal.h"
namespace transformer namespace transformer
{ {
...@@ -56,20 +58,74 @@ int TransformerMain(int argc, const char ** argv) ...@@ -56,20 +58,74 @@ int TransformerMain(int argc, const char ** argv)
LoadParamString(argc, args, "test", testFN, ""); LoadParamString(argc, args, "test", testFN, "");
LoadParamString(argc, args, "output", outputFN, ""); LoadParamString(argc, args, "output", outputFN, "");
/* learn model parameters */
if(strcmp(trainFN, "")) {
double startT = GetClockSec();
T2TTrainer trainer; T2TTrainer trainer;
trainer.Init(argc, args); trainer.Init(argc, args);
char * fn = new char[MAX_LINE_LENGTH];
char * fn1 = new char[MAX_LINE_LENGTH];
char * fn2 = new char[MAX_LINE_LENGTH];
modelFN = strcmp(modelFN, "") ? modelFN : (char *)"checkpoint.model";
int epoch;
bool isTrain;
for(epoch = 1; epoch <= trainer.nepoch; epoch++) {
sprintf(fn, "%s.%s.%03d", modelFN, "epoch", epoch - 1);
sprintf(fn1, "%s.%s.%03d", modelFN, "epoch", epoch);
sprintf(fn2, "%s.%s.%03d.output", modelFN, "epoch", epoch);
if(epoch == 1) {
T2TModel model; T2TModel model;
model.InitModel(argc, args);
isTrain = trainer.Train(trainFN, testFN, modelFN, &model);
model.Dump(fn1);
}
else {
T2TModel model;
model.InitModel(argc, args); model.InitModel(argc, args);
model.Read(fn);
/* learn model parameters */ isTrain = trainer.Train(trainFN, testFN, modelFN, &model);
if(strcmp(trainFN, "")) model.Dump(fn1);
trainer.Train(trainFN, testFN, strcmp(modelFN, "") ? modelFN : "checkpoint.model", &model); }
if(trainer.useEpochCheckpoint && strcmp(testFN, "")) {
T2TTrainer tester;
tester.Init(argc, args);
T2TModel model;
model.InitModel(argc, args);
model.Read(fn1);
tester.Test(testFN, fn2, &model);
}
if(!isTrain)
break;
}
double elapsed = GetClockSec() - startT;
epoch = MIN(epoch, trainer.nepoch);
XPRINT2(0, stderr, "[INFO] training finished (took %.1fs and epoch=%d)\n", elapsed, epoch);
delete[] fn;
delete[] fn1;
delete[] fn2;
}
/* don't dump the final model */
/* save the final model */ /* save the final model */
if(strcmp(modelFN, "") && strcmp(trainFN, "")) //if(strcmp(modelFN, "") && strcmp(trainFN, ""))
model.Dump(modelFN); // model.Dump(modelFN);
T2TModel model;
model.InitModel(argc, args);
/* load the model if neccessary */ /* load the model if neccessary */
if(strcmp(modelFN, "")) if(strcmp(modelFN, ""))
......
...@@ -292,7 +292,8 @@ void XMem::SetComputationMode(bool myIsForComputation) ...@@ -292,7 +292,8 @@ void XMem::SetComputationMode(bool myIsForComputation)
if(!myIsForComputation && devID >= 0 && cublasHandle != NULL) if(!myIsForComputation && devID >= 0 && cublasHandle != NULL)
cublasDestroy(cublasHandle); cublasDestroy(cublasHandle);
if(myIsForComputation) if(myIsForComputation)
CheckNTErrors(cublasCreate(&cublasHandle) == CURAND_STATUS_SUCCESS, "Cannot create the cublas handle."); CheckNTErrors((enum curandStatus)cublasCreate(&cublasHandle) == CURAND_STATUS_SUCCESS,
"Cannot create the cublas handle.");
SetDevice(devIDBackup); SetDevice(devIDBackup);
#endif #endif
...@@ -1392,7 +1393,7 @@ void XMem::CreateBLASHandle() ...@@ -1392,7 +1393,7 @@ void XMem::CreateBLASHandle()
"Cannot destroy the cublas handle."); "Cannot destroy the cublas handle.");
} }
CheckNTErrors(cublasCreate(&cublasHandle) == CURAND_STATUS_SUCCESS, CheckNTErrors((enum curandStatus)cublasCreate(&cublasHandle) == CURAND_STATUS_SUCCESS,
"Cannot create the cublas handle."); "Cannot create the cublas handle.");
#endif #endif
} }
......
...@@ -35,6 +35,8 @@ const char * GetOPName(int type) ...@@ -35,6 +35,8 @@ const char * GetOPName(int type)
return "M_EXP"; return "M_EXP";
else if (type == MATH_FLOOR) else if (type == MATH_FLOOR)
return "M_FLOOR"; return "M_FLOOR";
else if (type == MATH_ISNONZERO)
return "M_ISNONZERO";
else if (type == MATH_ISZERO) else if (type == MATH_ISZERO)
return "M_ISZERO"; return "M_ISZERO";
else if (type == MATH_LOG) else if (type == MATH_LOG)
......
...@@ -35,7 +35,8 @@ namespace nts { // namespace nts(NiuTrans.Tensor) ...@@ -35,7 +35,8 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
#define MATH_CEIL MATH_ABSOLUTE + 1 #define MATH_CEIL MATH_ABSOLUTE + 1
#define MATH_EXP MATH_CEIL + 1 #define MATH_EXP MATH_CEIL + 1
#define MATH_FLOOR MATH_EXP + 1 #define MATH_FLOOR MATH_EXP + 1
#define MATH_ISZERO MATH_FLOOR + 1 #define MATH_ISNONZERO MATH_FLOOR + 1
#define MATH_ISZERO MATH_ISNONZERO + 1
#define MATH_LOG MATH_ISZERO + 1 #define MATH_LOG MATH_ISZERO + 1
#define MATH_SQRT MATH_LOG + 1 #define MATH_SQRT MATH_LOG + 1
#define MATH_SQUARE MATH_SQRT + 1 #define MATH_SQUARE MATH_SQRT + 1
......
...@@ -1057,9 +1057,9 @@ int XTensor::GetKeyInSparse(int i) ...@@ -1057,9 +1057,9 @@ int XTensor::GetKeyInSparse(int i)
/* /*
set the value of a cell set the value of a cell
>> value - value to assign to the cell >> value - value we tend to set
>> index - index of the cell for each dimension >> index - index of the cell for each dimension
>> >> size - size of the index
*/ */
bool XTensor::Set(DTYPE value, int index[], int size) bool XTensor::Set(DTYPE value, int index[], int size)
{ {
...@@ -1070,8 +1070,9 @@ bool XTensor::Set(DTYPE value, int index[], int size) ...@@ -1070,8 +1070,9 @@ bool XTensor::Set(DTYPE value, int index[], int size)
/* /*
set the value of a cell in a 1d tensor set the value of a cell in a 1d tensor
>> value - value to assign to the cell >> value - value we tend to set
>> i - item offset >> i - item offset
<< return - succeeded or not
*/ */
bool XTensor::Set1D(DTYPE value, int i) bool XTensor::Set1D(DTYPE value, int i)
{ {
...@@ -1124,6 +1125,78 @@ bool XTensor::Set3D(DTYPE value, int d0, int d1, int d2) ...@@ -1124,6 +1125,78 @@ bool XTensor::Set3D(DTYPE value, int d0, int d1, int d2)
return SetToDevice(devID, GetCell(dims, 3), value); return SetToDevice(devID, GetCell(dims, 3), value);
} }
/*
set the integer value of a cell
>> value - value we tend to set
>> index - index of the cell for each dimension
>> size - size of the index
<< return - succeeded or not
*/
bool XTensor::SetInt(int value, int index[], int size)
{
CheckNTErrors((dataType == X_INT), "The tensor is not in integer type.");
return SetToDeviceInt(devID, GetCell(index, size), value);
}
/*
set the integer value of a cell in a 1d tensor
>> value - value we tend to set
>> i - item offset
<< return - succeeded or not
*/
bool XTensor::Set1DInt(int value, int i)
{
CheckNTErrors((order == 1), "Cannot get a 2d cell for a tensor whose order is not 2!");
CheckNTErrors((i >= 0 && i < dimSize[0]), "dimension 0 is out of range!");
CheckNTErrors((dataType == X_INT), "The tensor is not in integer type.");
int dims[1] = {i};
return SetToDeviceInt(devID, GetCell(dims, 1), value);
}
/*
set the integer value of a cell in a 2d tensor in default type
>> value - value we tend to set
>> ni - row index
>> mi - column index
<< return - succeeded or not
*/
bool XTensor::Set2DInt(int value, int ni, int mi)
{
CheckNTErrors((order == 2), "Cannot get a 2d cell for a tensor whose order is not 2!");
CheckNTErrors((ni >= 0 && ni < dimSize[0]), "dimension 0 is out of range!");
CheckNTErrors((mi >= 0 && mi < dimSize[1]), "dimension 1 is out of range!");
CheckNTErrors((dataType == X_INT), "The tensor is not in integer type.");
int dims[2] = {ni, mi};
return SetToDeviceInt(devID, GetCell(dims, 2), value);
}
/*
set the integer value of a cell in a 3d tensor in default type
>> value - value we tend to set
>> d0 - index of demension 0
>> d1 - index of demension 1
>> d2 - index of demension 2
<< return - succeeded or not
*/
bool XTensor::Set3DInt(int value, int d0, int d1, int d2)
{
CheckNTErrors(order == 3, "Cannot get a 2d cell for a tensor whose order is not 2!");
CheckNTErrors(d0 >= 0 && d0 < dimSize[0], "dimension 0 is out of range!");
CheckNTErrors(d1 >= 0 && d1 < dimSize[1], "dimension 1 is out of range!");
CheckNTErrors(d2 >= 0 && d2 < dimSize[2], "dimension 2 is out of range!");
CheckNTErrors((dataType == X_INT), "The tensor is not in integer type.");
int dims[3] = {d0, d1, d2};
return SetToDeviceInt(devID, GetCell(dims, 3), value);
}
/* /*
increase the value of a cell in a 2d tensor increase the value of a cell in a 2d tensor
>> value - value we tend to set >> value - value we tend to set
...@@ -1986,6 +2059,9 @@ XTensor * NewTensorBuf(const int myOrder, const int * myDimSize, ...@@ -1986,6 +2059,9 @@ XTensor * NewTensorBuf(const int myOrder, const int * myDimSize,
XTensor * tensor = NewTensor(myOrder, dims, myDataType, myDenseRatio, devID, myMem); XTensor * tensor = NewTensor(myOrder, dims, myDataType, myDenseRatio, devID, myMem);
if (tensor->unitNum * tensor->unitSize == 176657664) {
tensor->Dump(stderr, "", 200);
}
if(myMem != NULL) if(myMem != NULL)
tensor->data = myMem->AllocBuf(myMem->devID, tensor->unitNum * tensor->unitSize); tensor->data = myMem->AllocBuf(myMem->devID, tensor->unitNum * tensor->unitSize);
else else
...@@ -2135,7 +2211,7 @@ generate a copy of XTensor ...@@ -2135,7 +2211,7 @@ generate a copy of XTensor
>> isFilledData - indicates whether we allocate the data for >> isFilledData - indicates whether we allocate the data for
the newly-generated tensor the newly-generated tensor
*/ */
XTensor * NewTensor(XTensor * a, bool isFilledData) XTensor * NewTensor(const XTensor * a, bool isFilledData)
{ {
int dims[MAX_TENSOR_DIM_NUM]; int dims[MAX_TENSOR_DIM_NUM];
......
...@@ -327,6 +327,18 @@ public: ...@@ -327,6 +327,18 @@ public:
/* set the value of a cell in a 3d tensor */ /* set the value of a cell in a 3d tensor */
bool Set3D(DTYPE value, int d0, int d1, int d2); bool Set3D(DTYPE value, int d0, int d1, int d2);
/* set the integer value of a cell */
bool SetInt(int value, int index[], int size = -1);
/* set the integer value of a cell in a 1d tensor */
bool Set1DInt(int value, int i);
/* set the integer value of a cell in a 2d tensor */
bool Set2DInt(int value, int ni, int mi);
/* set the integer value of a cell in a 3d tensor */
bool Set3DInt(int value, int d0, int d1, int d2);
/* increase the value of a cell in a 2d */ /* increase the value of a cell in a 2d */
bool Add2D(DTYPE value, int ni, int mi); bool Add2D(DTYPE value, int ni, int mi);
...@@ -450,7 +462,7 @@ XTensor * NewTensor5D(const int d0, const int d1, const int d2, const int d3, co ...@@ -450,7 +462,7 @@ XTensor * NewTensor5D(const int d0, const int d1, const int d2, const int d3, co
const int myDevID = -1, XMem * myMem = NULL); const int myDevID = -1, XMem * myMem = NULL);
/* generate a copy of XTensor (with a reference to a given tensor) */ /* generate a copy of XTensor (with a reference to a given tensor) */
XTensor * NewTensor(XTensor * a, bool isFilledData = true); XTensor * NewTensor(const XTensor * a, bool isFilledData = true);
/* free the data space of a given tensor */ /* free the data space of a given tensor */
void DelTensor(XTensor * tensor); void DelTensor(XTensor * tensor);
......
...@@ -491,6 +491,21 @@ bool SetToDevice(int devID, void * p, DTYPE value) ...@@ -491,6 +491,21 @@ bool SetToDevice(int devID, void * p, DTYPE value)
return true; return true;
} }
/* assign a integer number to a variable that is kept on a specified device */
bool SetToDeviceInt(int devID, void * p, int value)
{
if(p == NULL)
return false;
if(devID < 0)
*(int*)p = value;
else{
XMemCopy(p, devID, &value, -1, sizeof(int));
}
return true;
}
/* get the next number with power of 2 */ /* get the next number with power of 2 */
unsigned int GetNextPower2(unsigned int n) unsigned int GetNextPower2(unsigned int n)
{ {
......
...@@ -50,6 +50,7 @@ extern void XMemFreeOnDev(int devID, void * p); ...@@ -50,6 +50,7 @@ extern void XMemFreeOnDev(int devID, void * p);
extern DTYPE ToCPU(int devID, void * value); extern DTYPE ToCPU(int devID, void * value);
extern int ToCPUInt(int devID, void * value); extern int ToCPUInt(int devID, void * value);
extern bool SetToDevice(int devID, void * p, DTYPE value); extern bool SetToDevice(int devID, void * p, DTYPE value);
extern bool SetToDeviceInt(int devID, void * p, int value);
extern unsigned int GetNextPower2(unsigned int n); extern unsigned int GetNextPower2(unsigned int n);
extern void XSleep(int sleepTime); extern void XSleep(int sleepTime);
extern double GetClock(); extern double GetClock();
......
...@@ -70,9 +70,9 @@ void _SetDataFanInOut(XTensor * tensor, DTYPE gain) ...@@ -70,9 +70,9 @@ void _SetDataFanInOut(XTensor * tensor, DTYPE gain)
fanOut = numOutputFmaps * receptiveFieldSize; fanOut = numOutputFmaps * receptiveFieldSize;
} }
DTYPE std = gain * (float)sqrt(2.0/(fanIn + fanOut)); DTYPE finfout = gain * (float)sqrt(6.0F/(fanIn + fanOut));
DTYPE a = (DTYPE)sqrt(3.0) * std; tensor->SetDataRand(-finfout, finfout);
_SetDataRand(tensor, -a, a); //_SetDataRand(tensor, -finfout, finfout);
} }
/* /*
...@@ -393,7 +393,7 @@ void _SetDataRand(XTensor * tensor, DTYPE lower, DTYPE upper) ...@@ -393,7 +393,7 @@ void _SetDataRand(XTensor * tensor, DTYPE lower, DTYPE upper)
if(tensor == NULL) if(tensor == NULL)
return; return;
/* GPU code */ /* CPU code */
if(tensor->devID < 0){ if(tensor->devID < 0){
DTYPE variance = upper - lower; DTYPE variance = upper - lower;
......
...@@ -37,6 +37,11 @@ DTYPE round(DTYPE r) ...@@ -37,6 +37,11 @@ DTYPE round(DTYPE r)
return (r > 0.0) ? (DTYPE)floor(r + 0.5) : (DTYPE)ceil(r - 0.5); return (r > 0.0) ? (DTYPE)floor(r + 0.5) : (DTYPE)ceil(r - 0.5);
} }
DTYPE isnonzero(DTYPE r)
{
return (r != 0.0) ? (DTYPE)1.0 : (DTYPE)0.0;
}
DTYPE iszero(DTYPE r) DTYPE iszero(DTYPE r)
{ {
return (r == 0.0) ? (DTYPE)1.0 : (DTYPE)0.0; return (r == 0.0) ? (DTYPE)1.0 : (DTYPE)0.0;
...@@ -93,6 +98,10 @@ _SIMPLE_UNARY_FUNCTION(_Floor, _CudaFloor, floor) ...@@ -93,6 +98,10 @@ _SIMPLE_UNARY_FUNCTION(_Floor, _CudaFloor, floor)
_SIMPLE_UNARY_FUNCTION_ME(_FloorMe, _Floor) _SIMPLE_UNARY_FUNCTION_ME(_FloorMe, _Floor)
SIMPLE_UNARY_FUNCTION(Floor, _Floor, MATH_FLOOR) SIMPLE_UNARY_FUNCTION(Floor, _Floor, MATH_FLOOR)
_SIMPLE_UNARY_FUNCTION(_IsNonZero, _CudaIsNonZero, isnonzero)
_SIMPLE_UNARY_FUNCTION_ME(_IsNonZeroMe, _IsNonZero)
SIMPLE_UNARY_FUNCTION(IsNonZero, _IsNonZero, MATH_ISNONZERO)
_SIMPLE_UNARY_FUNCTION(_IsZero, _CudaIsZero, iszero) _SIMPLE_UNARY_FUNCTION(_IsZero, _CudaIsZero, iszero)
_SIMPLE_UNARY_FUNCTION_ME(_IsZeroMe, _IsZero) _SIMPLE_UNARY_FUNCTION_ME(_IsZeroMe, _IsZero)
SIMPLE_UNARY_FUNCTION(IsZero, _IsZero, MATH_ISZERO) SIMPLE_UNARY_FUNCTION(IsZero, _IsZero, MATH_ISZERO)
...@@ -173,6 +182,10 @@ _SIMPLE_UNARY_FUNCTION(_Floor, floor) ...@@ -173,6 +182,10 @@ _SIMPLE_UNARY_FUNCTION(_Floor, floor)
_SIMPLE_UNARY_FUNCTION_ME(_FloorMe, _Floor) _SIMPLE_UNARY_FUNCTION_ME(_FloorMe, _Floor)
SIMPLE_UNARY_FUNCTION(Floor, _Floor, MATH_FLOOR) SIMPLE_UNARY_FUNCTION(Floor, _Floor, MATH_FLOOR)
_SIMPLE_UNARY_FUNCTION(_IsNonZero, isnonzero)
_SIMPLE_UNARY_FUNCTION_ME(_IsNonZeroMe, _IsNonZero)
SIMPLE_UNARY_FUNCTION(IsNonZero, _IsNonZero, MATH_ISNONZERO)
_SIMPLE_UNARY_FUNCTION(_IsZero, iszero) _SIMPLE_UNARY_FUNCTION(_IsZero, iszero)
_SIMPLE_UNARY_FUNCTION_ME(_IsZeroMe, _IsZero) _SIMPLE_UNARY_FUNCTION_ME(_IsZeroMe, _IsZero)
SIMPLE_UNARY_FUNCTION(IsZero, _IsZero, MATH_ISZERO) SIMPLE_UNARY_FUNCTION(IsZero, _IsZero, MATH_ISZERO)
......
...@@ -41,11 +41,18 @@ DTYPE cudaround(DTYPE r) ...@@ -41,11 +41,18 @@ DTYPE cudaround(DTYPE r)
} }
__device__ __device__
DTYPE cudaisnonzero(DTYPE r)
{
return (r != 0.0) ? (DTYPE)1.0 : (DTYPE)0.0;
}
__device__
DTYPE cudaiszero(DTYPE r) DTYPE cudaiszero(DTYPE r)
{ {
return (r == 0.0) ? (DTYPE)1.0 : (DTYPE)0.0; return (r == 0.0) ? (DTYPE)1.0 : (DTYPE)0.0;
} }
#define SIMPLE_UNARY_FUNCTION_GPU(funcName, origFunc) \ #define SIMPLE_UNARY_FUNCTION_GPU(funcName, origFunc) \
__global__ \ __global__ \
void Kernel##funcName(DTYPE * a, DTYPE * b, int size) \ void Kernel##funcName(DTYPE * a, DTYPE * b, int size) \
...@@ -96,6 +103,7 @@ SIMPLE_UNARY_FUNCTION_GPU(Absolute, fabs) ...@@ -96,6 +103,7 @@ SIMPLE_UNARY_FUNCTION_GPU(Absolute, fabs)
SIMPLE_UNARY_FUNCTION_GPU(Ceil, ceil) SIMPLE_UNARY_FUNCTION_GPU(Ceil, ceil)
SIMPLE_UNARY_FUNCTION_GPU(Exp, exp) SIMPLE_UNARY_FUNCTION_GPU(Exp, exp)
SIMPLE_UNARY_FUNCTION_GPU(Floor, floor) SIMPLE_UNARY_FUNCTION_GPU(Floor, floor)
SIMPLE_UNARY_FUNCTION_GPU(IsNonZero, cudaisnonzero)
SIMPLE_UNARY_FUNCTION_GPU(IsZero, cudaiszero) SIMPLE_UNARY_FUNCTION_GPU(IsZero, cudaiszero)
SIMPLE_UNARY_FUNCTION_GPU(Log, log) SIMPLE_UNARY_FUNCTION_GPU(Log, log)
SIMPLE_UNARY_FUNCTION_GPU(Round, cudaround) SIMPLE_UNARY_FUNCTION_GPU(Round, cudaround)
......
...@@ -66,6 +66,15 @@ void KernelFloor(__half * a, __half * b, int size); ...@@ -66,6 +66,15 @@ void KernelFloor(__half * a, __half * b, int size);
/* set each entry to its floor value */ /* set each entry to its floor value */
void _CudaFloor(const XTensor * a, XTensor * b); void _CudaFloor(const XTensor * a, XTensor * b);
/* if source entry is non-zero, set target entry to be one, otherwise zero (CUDA Kernel) */
__global__
void KernelIsNonZero(DTYPE * a, DTYPE * b, int size);
/* if source entry is non-zero, set target entry to be one, otherwise zero (CUDA Kernel) with float16 data type*/
__global__
void KernelIsNonZero(__half * a, __half * b, int size);
/* if source entry is non-zero, set target entry to be one, otherwise zero */
void _CudaIsNonZero(const XTensor * a, XTensor * b);
/* if source entry is zero, set target entry to be one, otherwise zero (CUDA Kernel) */ /* if source entry is zero, set target entry to be one, otherwise zero (CUDA Kernel) */
__global__ __global__
void KernelIsZero(DTYPE * a, DTYPE * b, int size); void KernelIsZero(DTYPE * a, DTYPE * b, int size);
......
...@@ -63,6 +63,15 @@ void _FloorMe(XTensor * a); ...@@ -63,6 +63,15 @@ void _FloorMe(XTensor * a);
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor Floor(const XTensor & a); XTensor Floor(const XTensor & a);
/* if source entry is non-zero, set target entry to be one, otherwise zero */
void _IsNonZero(const XTensor *a, XTensor *b);
/* if source entry is non-zero, set target entry to be one, otherwise zero (do it on site)
keep the result in the input tensor a and return nothing */
void _IsNonZeroMe(XTensor *a);
/* if source entry is non-zero, set target entry to be one, otherwise zero (return a XTensor structure)
make a new tensor to keep the result and return it */
XTensor IsNonZero(const XTensor &a);
/* if source entry is zero, set target entry to be one, otherwise zero */ /* if source entry is zero, set target entry to be one, otherwise zero */
void _IsZero(const XTensor *a, XTensor *b); void _IsZero(const XTensor *a, XTensor *b);
/* if source entry is zero, set target entry to be one, otherwise zero (do it on site) /* if source entry is zero, set target entry to be one, otherwise zero (do it on site)
......
...@@ -21,6 +21,8 @@ ...@@ -21,6 +21,8 @@
#include "Gather.h" #include "Gather.h"
#include "CopyIndexed.h" #include "CopyIndexed.h"
#include "../../XUtility.h"
#include "../shape/Reshape.h"
namespace nts{ // namespace nts(NiuTrans.Tensor) namespace nts{ // namespace nts(NiuTrans.Tensor)
...@@ -75,4 +77,50 @@ XTensor Gather(const XTensor &s, int dim, int * srcIndex, int indexSize) ...@@ -75,4 +77,50 @@ XTensor Gather(const XTensor &s, int dim, int * srcIndex, int indexSize)
return result; return result;
} }
/*
gather indexed sub-tensors (return a XTensor structure)
make a new tensor to keep the result and return it
>> s - the source tensor(2D)
>> index - the index tensor
<< return - the result of copying indexed sub-tensors
*/
XTensor Gather(const XTensor &s, const XTensor &index)
{
int indexSize = index.unitNum;
CheckNTErrors(s.order == 2, "The order of the input tensor must be 2!");
int * srcIndex = new int[index.unitNum];
if(index.dataType == X_INT) {
XMemCopy(srcIndex, -1, index.data, index.devID, indexSize * index.unitSize);
}
else if(index.dataType == X_FLOAT || index.dataType == X_DOUBLE) {
DTYPE * tmp = new DTYPE[indexSize];
XMemCopy(tmp, -1, index.data, index.devID, indexSize * index.unitSize);
for(int i = 0; i < indexSize; i++)
srcIndex[i] = (int)tmp[i];
delete[] tmp;
}
XTensor tensor;
tensor = Gather(s, 0, srcIndex, indexSize);
delete[] srcIndex;
if(index.order > 1) {
int * dims = new int[index.order + 1];
memcpy(dims, index.dimSize, index.order * sizeof(int));
dims[index.order] = tensor.GetDim(-1);
XTensor t;
t = Reshape(tensor, index.order + 1, dims);
delete[] dims;
return t;
}
else {
return tensor;
}
}
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
\ No newline at end of file
...@@ -33,6 +33,10 @@ void _Gather(const XTensor * s, XTensor * t, int dim, int * srcIndex, int indexS ...@@ -33,6 +33,10 @@ void _Gather(const XTensor * s, XTensor * t, int dim, int * srcIndex, int indexS
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor Gather(const XTensor &s, int dim, int * srcIndex, int indexSize); XTensor Gather(const XTensor &s, int dim, int * srcIndex, int indexSize);
/* gather selected sub-tensors (return a XTensor structure)
make a new tensor to keep the result and return it */
XTensor Gather(const XTensor &s, const XTensor &index);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
#endif // __GATHER_H__ #endif // __GATHER_H__
...@@ -16,8 +16,8 @@ ...@@ -16,8 +16,8 @@
*/ */
/* /*
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24 * $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24
*/ */
#include <math.h> #include <math.h>
#include "ReduceSum.h" #include "ReduceSum.h"
......
...@@ -44,23 +44,24 @@ sum all the items of the tensor (It should be optimized!) ...@@ -44,23 +44,24 @@ sum all the items of the tensor (It should be optimized!)
>> source - the inpute tensor >> source - the inpute tensor
<< return - the total summation << return - the total summation
*/ */
DTYPE _ReduceSumAll(XTensor * source) DTYPE _ReduceSumAll(const XTensor * source)
{ {
int order = source->order; int order = source->order;
DTYPE summation; DTYPE summation;
XTensor * big = NewTensor(source); XTensor * big = NewTensor(source);
_CopyValues(source, big); _CopyValues(source, big);
for(int i = 0; i < order; i++) { for(int i = order - 1; i >= 0; i--) {
if(i == 0)
if(i == order - 1) big->Reshape(1, big->unitNum);
big->Reshape(big->unitNum, 1);
int leadingDim = big->order - 1;
int * dimSize; int * dimSize;
dimSize = getDimSize(big, 0); dimSize = getDimSize(big, leadingDim);
XTensor * little = NewTensor(big->order - 1, dimSize, source->dataType, source->denseRatio, source->devID, source->mem); XTensor * little = NewTensor(big->order - 1, dimSize, source->dataType, source->denseRatio,
source->devID, source->mem);
_ReduceSum(big, little, 0); _ReduceSum(big, little, leadingDim);
delete big; delete big;
delete dimSize; delete dimSize;
...@@ -81,7 +82,7 @@ sum all the items of the tensor ...@@ -81,7 +82,7 @@ sum all the items of the tensor
>> source - the inpute tensor >> source - the inpute tensor
<< return - the total summation << return - the total summation
*/ */
DTYPE ReduceSumAll(XTensor & source) DTYPE ReduceSumAll(const XTensor & source)
{ {
return _ReduceSumAll(&source); return _ReduceSumAll(&source);
} }
......
...@@ -28,10 +28,10 @@ ...@@ -28,10 +28,10 @@
namespace nts{ // namespace nts(NiuTrans.Tensor) namespace nts{ // namespace nts(NiuTrans.Tensor)
/* sum all the items of the tensor */ /* sum all the items of the tensor */
DTYPE _ReduceSumAll(XTensor * source); DTYPE _ReduceSumAll(const XTensor * source);
/* sum all the items of the tensor */ /* sum all the items of the tensor */
DTYPE ReduceSumAll(XTensor & source); DTYPE ReduceSumAll(const XTensor & source);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -38,9 +38,9 @@ DTYPE _CudaCrossEntropyFast(const XTensor * output, const XTensor * gold, ...@@ -38,9 +38,9 @@ DTYPE _CudaCrossEntropyFast(const XTensor * output, const XTensor * gold,
const XTensor * padding = NULL, int leadingDim = -1); const XTensor * padding = NULL, int leadingDim = -1);
/* backward computation of cross entropy function */ /* backward computation of cross entropy function */
void _CudaCrossEntropyBackward(XTensor * dedy, const XTensor * output, const XTensor * gold, void _CudaCrossEntropyBackward(XTensor * dedy, const XTensor * output,
const XTensor * weight = NULL, XTensor * padding = NULL, const XTensor * gold, const XTensor * weight = NULL,
int leadingDim = -1); XTensor * padding = NULL, int leadingDim = -1);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -52,9 +52,9 @@ DTYPE _CrossEntropyFast(const XTensor * output, const XTensor * gold, ...@@ -52,9 +52,9 @@ DTYPE _CrossEntropyFast(const XTensor * output, const XTensor * gold,
const XTensor * padding = NULL, int leadingDim = -1); const XTensor * padding = NULL, int leadingDim = -1);
/* backward computation of cross entropy function */ /* backward computation of cross entropy function */
void _CrossEntropyBackward(XTensor * dedy, const XTensor * output, const XTensor * gold, void _CrossEntropyBackward(XTensor * dedy, const XTensor * output,
const XTensor * weight = NULL, XTensor * padding = NULL, const XTensor * gold, const XTensor * weight = NULL,
int leadingDim = -1); XTensor * padding = NULL, int leadingDim = -1);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -280,7 +280,7 @@ better numerical stability. ...@@ -280,7 +280,7 @@ better numerical stability.
*/ */
void _LogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, void _LogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx,
int leadDim, XTensor * padding, int leadDim,
LOSS_FUNCTION_NAME lossName) LOSS_FUNCTION_NAME lossName)
{ {
CheckNTErrors((!dedx->isSparse), "The gradient matrix must be dense!"); CheckNTErrors((!dedx->isSparse), "The gradient matrix must be dense!");
...@@ -292,7 +292,7 @@ void _LogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, ...@@ -292,7 +292,7 @@ void _LogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
int leadDimRDI = y->order - leadDim - 1; int leadDimRDI = y->order - leadDim - 1;
#ifdef USE_CUDA #ifdef USE_CUDA
if (gold->devID >= 0) { if (gold->devID >= 0) {
_CudaLogSoftmaxBackward(gold, y, x, dedy, dedx, leadDim, lossName); _CudaLogSoftmaxBackward(gold, y, x, dedy, dedx, padding, leadDim, lossName);
return; return;
} }
#endif #endif
......
...@@ -22,6 +22,7 @@ ...@@ -22,6 +22,7 @@
#include "LogSoftmax.h" #include "LogSoftmax.h"
#include "LogSoftmax.cuh" #include "LogSoftmax.cuh"
#include "Loss.cuh" #include "Loss.cuh"
#include "../core/arithmetic/MultiplyDim.h"
#include "../core/reduce/ReduceSum.cuh" #include "../core/reduce/ReduceSum.cuh"
#include "../core/reduce/ReduceMax.cuh" #include "../core/reduce/ReduceMax.cuh"
#include "../XDevice.h" #include "../XDevice.h"
...@@ -232,7 +233,8 @@ dE/dx = dE/dy * dy/dx ...@@ -232,7 +233,8 @@ dE/dx = dE/dy * dy/dx
>> lossName - name of the loss function >> lossName - name of the loss function
*/ */
__global__ __global__
void KernelLogSoftmaxBackwardDEDS(DTYPE * dedy, DTYPE * dedx, DTYPE * gold, DTYPE * y, DTYPE * x, int size, LOSS_FUNCTION_NAME lossName) void KernelLogSoftmaxBackwardDEDS(DTYPE * dedy, DTYPE * dedx, DTYPE * gold, DTYPE * y, DTYPE * x,
int size, LOSS_FUNCTION_NAME lossName)
{ {
int i = blockDim.x * blockIdx.x + threadIdx.x; int i = blockDim.x * blockIdx.x + threadIdx.x;
...@@ -372,9 +374,11 @@ better numerical stability. ...@@ -372,9 +374,11 @@ better numerical stability.
*/ */
void _CudaLogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, void _CudaLogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx,
int leadDim, XTensor * padding, int leadDim,
LOSS_FUNCTION_NAME lossName) LOSS_FUNCTION_NAME lossName)
{ {
leadDim = leadDim < 0 ? y->order - 1 : leadDim;
CheckNTErrors((x->devID >= 0), "Backward computation of log softmax must be run on GPUs."); CheckNTErrors((x->devID >= 0), "Backward computation of log softmax must be run on GPUs.");
CheckNTErrors((x->devID == y->devID && gold->devID == y->devID), CheckNTErrors((x->devID == y->devID && gold->devID == y->devID),
"Tensors used in log softmax are not on the same GPU."); "Tensors used in log softmax are not on the same GPU.");
...@@ -441,6 +445,26 @@ void _CudaLogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, ...@@ -441,6 +445,26 @@ void _CudaLogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
dimensionSize * stride, lossName); dimensionSize * stride, lossName);
} }
} }
if(padding != NULL) {
int n = leadDim;
int paddingOrder = padding->order;
int * paddingDims = new int[paddingOrder];
memcpy(paddingDims, padding->dimSize, padding->order * sizeof(int));
padding->Reshape(padding->unitNum);
int order = dedx->order;
int * dims = new int[order];
memcpy(dims, dedx->dimSize, dedx->order * sizeof(int));
dedx->Reshape(dedx->unitNum/dedx->GetDim(n), dedx->GetDim(n));
_MultiplyDimMe(dedx, padding, 0);
padding->Reshape(paddingOrder, paddingDims);
dedx->Reshape(order, dims);
delete[] paddingDims;
delete[] dims;
}
} }
else { else {
ShowNTErrors("TODO!"); ShowNTErrors("TODO!");
......
...@@ -38,7 +38,7 @@ void _CudaLogSoftmaxSumMax(XTensor * x, XTensor * y, int leadDim, XTensor * sum, ...@@ -38,7 +38,7 @@ void _CudaLogSoftmaxSumMax(XTensor * x, XTensor * y, int leadDim, XTensor * sum,
/* de/dx (Cuda version) */ /* de/dx (Cuda version) */
void _CudaLogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, void _CudaLogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx,
int leadDim, XTensor * padding, int leadDim,
LOSS_FUNCTION_NAME lossName); LOSS_FUNCTION_NAME lossName);
#endif // USE_CUDA #endif // USE_CUDA
......
...@@ -39,7 +39,7 @@ void LogSoftmax(const XTensor &x, XTensor &y, int leadDim); ...@@ -39,7 +39,7 @@ void LogSoftmax(const XTensor &x, XTensor &y, int leadDim);
/* de/dx */ /* de/dx */
void _LogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, void _LogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx,
int leadDim, XTensor * padding, int leadDim,
LOSS_FUNCTION_NAME lossName); LOSS_FUNCTION_NAME lossName);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -486,8 +486,9 @@ void _LossBackward(XTensor * dedy, XTensor * t, XTensor * y, ...@@ -486,8 +486,9 @@ void _LossBackward(XTensor * dedy, XTensor * t, XTensor * y,
for (int i = 0; i < blockNum; i++) { for (int i = 0; i < blockNum; i++) {
for (int j = 0; j < stride; j++) { for (int j = 0; j < stride; j++) {
for (int k = 0; k < tLen; k++) { for (int k = 0; k < tLen; k++) {
*(dedyp + i * stride * dimensionSize + j + stride * (yBeg + k)) = -(DTYPE)*(tp + i * stride * dimensionSize *(dedyp + i * stride * dimensionSize + j + stride * (yBeg + k)) =
+ j + stride * (tBeg + k)) / (DTYPE)*(yp + i * stride * dimensionSize + j + stride * (yBeg + k)); -(DTYPE)*(tp + i * stride * dimensionSize + j + stride * (tBeg + k)) /
(DTYPE)*(yp + i * stride * dimensionSize + j + stride * (yBeg + k));
} }
} }
} }
......
...@@ -175,7 +175,7 @@ See more details in LogSoftmaxBackward(...) ...@@ -175,7 +175,7 @@ See more details in LogSoftmaxBackward(...)
*/ */
void _SoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, void _SoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx,
int leadDim, XTensor * padding, int leadDim,
LOSS_FUNCTION_NAME lossName) LOSS_FUNCTION_NAME lossName)
{ {
CheckNTErrors(dedx->isSparse == false, "The gradient tensor must be dense!"); CheckNTErrors(dedx->isSparse == false, "The gradient tensor must be dense!");
...@@ -188,7 +188,7 @@ void _SoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, ...@@ -188,7 +188,7 @@ void _SoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
#ifdef USE_CUDA #ifdef USE_CUDA
if(y->devID >= 0){ if(y->devID >= 0){
_CudaSoftmaxBackward(gold, y, x, dedy, dedx, leadDim, lossName); _CudaSoftmaxBackward(gold, y, x, dedy, dedx, padding, leadDim, lossName);
return; return;
} }
#endif #endif
...@@ -297,9 +297,10 @@ void _SoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, ...@@ -297,9 +297,10 @@ void _SoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
\beta = \sum_i (dE/dy_i * y_i) \beta = \sum_i (dE/dy_i * y_i)
*/ */
for(int k = 0; k < blockNum; k++){ for(int m = 0; m < blockNum; m++){
op = (DTYPE*)y->data + k * blockSize; yp = (DTYPE*)dedy->data + m * blockSize;
sp = (DTYPE*)dedx->data + k * blockSize; op = (DTYPE*)y->data + m * blockSize;
sp = (DTYPE*)dedx->data + m * blockSize;
int nCols = stride; int nCols = stride;
for(int k = 0; k < stride; k++){ for(int k = 0; k < stride; k++){
......
...@@ -24,6 +24,7 @@ ...@@ -24,6 +24,7 @@
#include "Loss.cuh" #include "Loss.cuh"
#include "../core/reduce/ReduceSum.h" #include "../core/reduce/ReduceSum.h"
#include "../core/arithmetic/Multiply.h" #include "../core/arithmetic/Multiply.h"
#include "../core/arithmetic/MultiplyDim.h"
#include "../core/shape/Unsqueeze.h" #include "../core/shape/Unsqueeze.h"
#include "../core/arithmetic/Sum.h" #include "../core/arithmetic/Sum.h"
#include "../XDevice.h" #include "../XDevice.h"
...@@ -309,9 +310,11 @@ See more details in SoftmaxBackward ...@@ -309,9 +310,11 @@ See more details in SoftmaxBackward
*/ */
void _CudaSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, void _CudaSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx,
int leadDim, XTensor * padding, int leadDim,
LOSS_FUNCTION_NAME lossName) LOSS_FUNCTION_NAME lossName)
{ {
int n = leadDim < 0 ? y->order - 1 : leadDim;
CheckNTErrors((x->devID >= 0), "Backward computation of log softmax must be run on GPUs."); CheckNTErrors((x->devID >= 0), "Backward computation of log softmax must be run on GPUs.");
CheckNTErrors((x->devID == y->devID), "Matrices used in log softmax are not on the same GPU."); CheckNTErrors((x->devID == y->devID), "Matrices used in log softmax are not on the same GPU.");
CheckNTErrors((y->order >= 1), "Empty tensor!"); CheckNTErrors((y->order >= 1), "Empty tensor!");
...@@ -329,6 +332,24 @@ void _CudaSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, ...@@ -329,6 +332,24 @@ void _CudaSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
if(lossName == CROSSENTROPY || lossName == SQUAREDERROR){ if(lossName == CROSSENTROPY || lossName == SQUAREDERROR){
_Sum(y, gold, dedx, -1.0F); _Sum(y, gold, dedx, -1.0F);
if(padding != NULL) {
int paddingOrder = padding->order;
int * paddingDims = new int[paddingOrder];
memcpy(paddingDims, padding->dimSize, padding->order * sizeof(int));
padding->Reshape(padding->unitNum);
int order = dedx->order;
int * dims = new int[order];
memcpy(dims, dedx->dimSize, dedx->order * sizeof(int));
dedx->Reshape(dedx->unitNum/dedx->GetDim(n), dedx->GetDim(n));
_MultiplyDimMe(dedx, padding, 0);
padding->Reshape(paddingOrder, paddingDims);
dedx->Reshape(order, dims);
delete[] paddingDims;
delete[] dims;
}
} }
else if(lossName == ONEHOTERROR){ else if(lossName == ONEHOTERROR){
ShowNTErrors("TODO!"); ShowNTErrors("TODO!");
......
...@@ -38,7 +38,7 @@ void _CudaSoftmaxSumMax(const XTensor * x, XTensor * y, int leadDim, XTensor * s ...@@ -38,7 +38,7 @@ void _CudaSoftmaxSumMax(const XTensor * x, XTensor * y, int leadDim, XTensor * s
/* de/dx (Cuda version) */ /* de/dx (Cuda version) */
void _CudaSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, void _CudaSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx,
int leadDim, XTensor * padding, int leadDim,
LOSS_FUNCTION_NAME lossName); LOSS_FUNCTION_NAME lossName);
#endif // USE_CUDA #endif // USE_CUDA
......
...@@ -36,7 +36,7 @@ XTensor Softmax(const XTensor &x, int leadDim); ...@@ -36,7 +36,7 @@ XTensor Softmax(const XTensor &x, int leadDim);
/* de/dx */ /* de/dx */
void _SoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, void _SoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx,
int leadDim, XTensor * padding, int leadDim,
LOSS_FUNCTION_NAME lossName); LOSS_FUNCTION_NAME lossName);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -169,8 +169,8 @@ bool TestDropout2() ...@@ -169,8 +169,8 @@ bool TestDropout2()
_DropoutBackward(y, x, dedy, dedx, 1, dropProb); _DropoutBackward(y, x, dedy, dedx, 1, dropProb);
/* check result */ /* check result */
y->Dump(stderr, "y"); //y->Dump(stderr, "y");
dedx->Dump(stderr, "dedy"); //dedx->Dump(stderr, "dedy");
#ifdef USE_CUDA #ifdef USE_CUDA
/* GPU test */ /* GPU test */
...@@ -193,8 +193,8 @@ bool TestDropout2() ...@@ -193,8 +193,8 @@ bool TestDropout2()
_DropoutBackward(yGPU, xGPU, dedyGPU, dedxGPU, 1, dropProb); _DropoutBackward(yGPU, xGPU, dedyGPU, dedxGPU, 1, dropProb);
/* check result */ /* check result */
yGPU->Dump(stderr, "yGPU"); //yGPU->Dump(stderr, "yGPU");
dedxGPU->Dump(stderr, "dedyGPU"); //dedxGPU->Dump(stderr, "dedyGPU");
/* destroy variables */ /* destroy variables */
delete x; delete x;
......
...@@ -146,7 +146,7 @@ bool TestLogSoftmax2() ...@@ -146,7 +146,7 @@ bool TestLogSoftmax2()
_LogSoftmax(x, y, 1); _LogSoftmax(x, y, 1);
/* call LogSoftmaxBackward function */ /* call LogSoftmaxBackward function */
_LogSoftmaxBackward(g, y, x, dedy, dedx, 1, CROSSENTROPY); _LogSoftmaxBackward(g, y, x, dedy, dedx, NULL, 1, CROSSENTROPY);
/* check result */ /* check result */
cpuTest = y->CheckData(yAnswer, unitNum, 1e-4F) cpuTest = y->CheckData(yAnswer, unitNum, 1e-4F)
...@@ -174,7 +174,7 @@ bool TestLogSoftmax2() ...@@ -174,7 +174,7 @@ bool TestLogSoftmax2()
_LogSoftmax(xGPU, yGPU, 1); _LogSoftmax(xGPU, yGPU, 1);
/* call LogSoftmaxBackward function */ /* call LogSoftmaxBackward function */
_LogSoftmaxBackward(gGPU, yGPU, xGPU, dedyGPU, dedxGPU, 1, CROSSENTROPY); _LogSoftmaxBackward(gGPU, yGPU, xGPU, dedyGPU, dedxGPU, NULL, 1, CROSSENTROPY);
/* check result */ /* check result */
gpuTest = yGPU->CheckData(yAnswer, unitNum, 1e-4F) && dedxGPU->CheckData(dedxAnswer, unitNum, 1e-4F); gpuTest = yGPU->CheckData(yAnswer, unitNum, 1e-4F) && dedxGPU->CheckData(dedxAnswer, unitNum, 1e-4F);
...@@ -250,7 +250,7 @@ bool TestLogSoftmax3() ...@@ -250,7 +250,7 @@ bool TestLogSoftmax3()
_LogSoftmax(x, y, 1); _LogSoftmax(x, y, 1);
/* call LogSoftmaxBackward function */ /* call LogSoftmaxBackward function */
_LogSoftmaxBackward(g, y, x, dedy, dedx, 1, SQUAREDERROR); _LogSoftmaxBackward(g, y, x, dedy, dedx, NULL, 1, SQUAREDERROR);
/* check result */ /* check result */
cpuTest = y->CheckData(yAnswer, unitNum, 1e-4F) cpuTest = y->CheckData(yAnswer, unitNum, 1e-4F)
...@@ -278,7 +278,7 @@ bool TestLogSoftmax3() ...@@ -278,7 +278,7 @@ bool TestLogSoftmax3()
_LogSoftmax(xGPU, yGPU, 1); _LogSoftmax(xGPU, yGPU, 1);
/* call LogSoftmaxBackward function */ /* call LogSoftmaxBackward function */
_LogSoftmaxBackward(gGPU, yGPU, xGPU, dedyGPU, dedxGPU, 1, SQUAREDERROR); _LogSoftmaxBackward(gGPU, yGPU, xGPU, dedyGPU, dedxGPU, NULL, 1, SQUAREDERROR);
/* check result */ /* check result */
gpuTest = yGPU->CheckData(yAnswer, unitNum, 1e-4F) gpuTest = yGPU->CheckData(yAnswer, unitNum, 1e-4F)
......
...@@ -66,7 +66,9 @@ bool TestPower1() ...@@ -66,7 +66,9 @@ bool TestPower1()
bUser = Power(*a, 2.0F); bUser = Power(*a, 2.0F);
/* check results */ /* check results */
cpuTest = b->CheckData(answer, aUnitNum, 1e-4F) && aMe->CheckData(answer, aUnitNum, 1e-4F) && bUser.CheckData(answer, aUnitNum, 1e-4F); cpuTest = b->CheckData(answer, aUnitNum, 1e-4F) &&
aMe->CheckData(answer, aUnitNum, 1e-4F) &&
bUser.CheckData(answer, aUnitNum, 1e-4F);
#ifdef USE_CUDA #ifdef USE_CUDA
/* GPU test */ /* GPU test */
...@@ -88,7 +90,9 @@ bool TestPower1() ...@@ -88,7 +90,9 @@ bool TestPower1()
bUserGPU = Power(*aGPU, 2.0F); bUserGPU = Power(*aGPU, 2.0F);
/* check results */ /* check results */
gpuTest = bGPU->CheckData(answer, aUnitNum, 1e-4F) && aMeGPU->CheckData(answer, aUnitNum, 1e-4F) && bUserGPU.CheckData(answer, aUnitNum, 1e-4F); gpuTest = bGPU->CheckData(answer, aUnitNum, 1e-4F) &&
aMeGPU->CheckData(answer, aUnitNum, 1e-4F) &&
bUserGPU.CheckData(answer, aUnitNum, 1e-4F);
/* destroy variables */ /* destroy variables */
delete a; delete a;
...@@ -153,7 +157,9 @@ bool TestPower2() ...@@ -153,7 +157,9 @@ bool TestPower2()
bUser = Power(*a, 1.0F); bUser = Power(*a, 1.0F);
/* check results */ /* check results */
cpuTest = b->CheckData(answer, aUnitNum, 1e-4F) && aMe->CheckData(answer, aUnitNum, 1e-4F) && bUser.CheckData(answer, aUnitNum, 1e-4F); cpuTest = b->CheckData(answer, aUnitNum, 1e-4F) &&
aMe->CheckData(answer, aUnitNum, 1e-4F) &&
bUser.CheckData(answer, aUnitNum, 1e-4F);
#ifdef USE_CUDA #ifdef USE_CUDA
/* GPU test */ /* GPU test */
...@@ -175,7 +181,9 @@ bool TestPower2() ...@@ -175,7 +181,9 @@ bool TestPower2()
bUserGPU = Power(*aGPU, 1.0F); bUserGPU = Power(*aGPU, 1.0F);
/* check results */ /* check results */
gpuTest = bGPU->CheckData(answer, aUnitNum, 1e-4F) && aMeGPU->CheckData(answer, aUnitNum, 1e-4F) && bUserGPU.CheckData(answer, aUnitNum, 1e-4F); gpuTest = bGPU->CheckData(answer, aUnitNum, 1e-4F) &&
aMeGPU->CheckData(answer, aUnitNum, 1e-4F) &&
bUserGPU.CheckData(answer, aUnitNum, 1e-4F);
/* destroy variables */ /* destroy variables */
delete a; delete a;
...@@ -214,7 +222,7 @@ bool TestPower3() ...@@ -214,7 +222,7 @@ bool TestPower3()
for (int i = 0; i < aOrder; i++) for (int i = 0; i < aOrder; i++)
aUnitNum *= aDimSize[i]; aUnitNum *= aDimSize[i];
DTYPE aData[3][2] = { {0.0F, 1.0F}, DTYPE aData[3][2] = { {1.0F, 1.0F},
{2.0F, 3.0F}, {2.0F, 3.0F},
{4.0F, 5.0F} }; {4.0F, 5.0F} };
DTYPE answer[3][2] = { {1.0F, 1.0F}, DTYPE answer[3][2] = { {1.0F, 1.0F},
...@@ -240,7 +248,9 @@ bool TestPower3() ...@@ -240,7 +248,9 @@ bool TestPower3()
bUser = Power(*a, 0.0F); bUser = Power(*a, 0.0F);
/* check results */ /* check results */
cpuTest = b->CheckData(answer, aUnitNum, 1e-4F) && aMe->CheckData(answer, aUnitNum, 1e-4F) && bUser.CheckData(answer, aUnitNum, 1e-4F); cpuTest = b->CheckData(answer, aUnitNum, 1e-4F) &&
aMe->CheckData(answer, aUnitNum, 1e-4F) &&
bUser.CheckData(answer, aUnitNum, 1e-4F);
#ifdef USE_CUDA #ifdef USE_CUDA
/* GPU test */ /* GPU test */
...@@ -262,7 +272,9 @@ bool TestPower3() ...@@ -262,7 +272,9 @@ bool TestPower3()
bUserGPU = Power(*aGPU, 0.0F); bUserGPU = Power(*aGPU, 0.0F);
/* check results */ /* check results */
gpuTest = bGPU->CheckData(answer, aUnitNum, 1e-4F) && aMeGPU->CheckData(answer, aUnitNum, 1e-4F) && bUserGPU.CheckData(answer, aUnitNum, 1e-4F); gpuTest = bGPU->CheckData(answer, aUnitNum, 1e-4F) &&
aMeGPU->CheckData(answer, aUnitNum, 1e-4F) &&
bUserGPU.CheckData(answer, aUnitNum, 1e-4F);
/* destroy variables */ /* destroy variables */
delete a; delete a;
......
...@@ -146,7 +146,7 @@ bool TestSoftmax2() ...@@ -146,7 +146,7 @@ bool TestSoftmax2()
_Softmax(x, y, 1); _Softmax(x, y, 1);
/* call SoftmaxBackward function */ /* call SoftmaxBackward function */
_SoftmaxBackward(g, y, x, dedy, dedx, 1, CROSSENTROPY); _SoftmaxBackward(g, y, x, dedy, dedx, NULL, 1, CROSSENTROPY);
/* check result */ /* check result */
cpuTest = y->CheckData(yAnswer, unitNum, 1e-4F) cpuTest = y->CheckData(yAnswer, unitNum, 1e-4F)
...@@ -174,7 +174,7 @@ bool TestSoftmax2() ...@@ -174,7 +174,7 @@ bool TestSoftmax2()
_Softmax(xGPU, yGPU, 1); _Softmax(xGPU, yGPU, 1);
/* call SoftmaxBackward function */ /* call SoftmaxBackward function */
_SoftmaxBackward(gGPU, yGPU, xGPU, dedyGPU, dedxGPU, 1, CROSSENTROPY); _SoftmaxBackward(gGPU, yGPU, xGPU, dedyGPU, dedxGPU, NULL, 1, CROSSENTROPY);
/* check result */ /* check result */
gpuTest = yGPU->CheckData(yAnswer, unitNum, 1e-4F) gpuTest = yGPU->CheckData(yAnswer, unitNum, 1e-4F)
......
...@@ -20,8 +20,9 @@ ...@@ -20,8 +20,9 @@
*/ */
#include "TSumDim.h" #include "TSumDim.h"
#include "../core/arithmetic/SumDim.h"
#include "../XTensor.h" #include "../XTensor.h"
#include "../core/arithmetic/SumDim.h"
#include "../core/getandset/SetData.h"
namespace nts { // namespace nts(NiuTrans.Tensor) namespace nts { // namespace nts(NiuTrans.Tensor)
...@@ -251,6 +252,225 @@ bool TestSumDim2() ...@@ -251,6 +252,225 @@ bool TestSumDim2()
#endif // USE_CUDA #endif // USE_CUDA
} }
/*
case 3: tensor summation c = a + b * \beta
where the size of b is equal to the n-th dimension of a,
i.e., a is summed with b by broadcasting.
In this case,
(20, 40, 4000) + (40) = (20, 40, 4000), dim = 1.
*/
bool TestSumDim3()
{
/* a tensor of size (20, 40, 4000) */
int aOrder = 3;
int * aDimSize = new int[aOrder];
aDimSize[0] = 20;
aDimSize[1] = 40;
aDimSize[2] = 4000;
int aUnitNum = 1;
for (int i = 0; i < aOrder; i++)
aUnitNum *= aDimSize[i];
/* a tensor of size (40) */
int bOrder = 1;
int * bDimSize = new int[bOrder];
bDimSize[0] = 40;
int bUnitNum = 1;
for (int i = 0; i < bOrder; i++)
bUnitNum *= bDimSize[i];
/* CPU test */
bool cpuTest = true;
/* create tensors */
XTensor * a = NewTensor(aOrder, aDimSize);
XTensor * b = NewTensor(bOrder, bDimSize);
XTensor * c = NewTensor(aOrder, aDimSize);
XTensor * cMe = NewTensor(aOrder, aDimSize);
XTensor * answer = NewTensor(aOrder, aDimSize);
XTensor cUser;
/* initialize variables */
a->SetZeroAll();
cMe->SetZeroAll();
_SetDataFixedFloat(b, 1.0F);
_SetDataFixedFloat(answer, 1.0F);
/* call SumDim function */
_SumDim(a, b, c, 1);
_SumDim(cMe, b, 1);
cUser = SumDim(*a, *b, 1);
/* check results */
cpuTest = c->CheckData(answer->data, aUnitNum) &&
cMe->CheckData(answer->data, aUnitNum) &&
cUser.CheckData(answer->data, aUnitNum);
#ifdef USE_CUDA
/* GPU test */
bool gpuTest = true;
/* create tensor */
XTensor * aGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
XTensor * bGPU = NewTensor(bOrder, bDimSize, X_FLOAT, 1.0F, 0);
XTensor * cGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
XTensor * cMeGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
XTensor cUserGPU;
/* Initialize variables */
aGPU->SetZeroAll();
cMe->SetZeroAll();
_SetDataFixedFloat(bGPU, 1.0F);
/* call sum function */
_SumDim(aGPU, bGPU, cGPU, 1);
_SumDim(cMeGPU, bGPU, 1);
cUserGPU = SumDim(*aGPU, *bGPU, 1);
/* check results */
gpuTest = cGPU->CheckData(answer->data, aUnitNum) &&
cMeGPU->CheckData(answer->data, aUnitNum) &&
cUserGPU.CheckData(answer->data, aUnitNum);
/* destroy variables */
delete a;
delete b;
delete c;
delete cMe;
delete answer;
delete aGPU;
delete bGPU;
delete cGPU;
delete cMeGPU;
delete[] aDimSize;
delete[] bDimSize;
return cpuTest && gpuTest;
#else
/* destroy variables */
delete a;
delete b;
delete c;
delete cMe;
delete answer;
delete[] aDimSize;
delete[] bDimSize;
return cpuTest;
#endif // USE_CUDA
}
/*
case 4: tensor summation c = a + b * \beta
where the size of b is equal to the n-th dimension of a,
i.e., a is summed with b by broadcasting.
In this case,
(200, 40, 4000) + (40) = (200, 40, 4000), dim = 1.
*/
bool TestSumDim4()
{
/* a tensor of size (200, 40, 4000) */
int aOrder = 2;
int * aDimSize = new int[aOrder];
aDimSize[0] = 1000000;
aDimSize[1] = 50;
int aUnitNum = 1;
for (int i = 0; i < aOrder; i++)
aUnitNum *= aDimSize[i];
/* a tensor of size (40) */
int bOrder = 1;
int * bDimSize = new int[bOrder];
bDimSize[0] = 50;
int bUnitNum = 1;
for (int i = 0; i < bOrder; i++)
bUnitNum *= bDimSize[i];
/* CPU test */
bool cpuTest = true;
/* create tensors */
XTensor * a = NewTensor(aOrder, aDimSize);
XTensor * b = NewTensor(bOrder, bDimSize);
XTensor * c = NewTensor(aOrder, aDimSize);
XTensor * cMe = NewTensor(aOrder, aDimSize);
XTensor * answer = NewTensor(aOrder, aDimSize);
XTensor cUser;
/* initialize variables */
a->SetZeroAll();
cMe->SetZeroAll();
_SetDataFixedFloat(b, 1.0F);
_SetDataFixedFloat(answer, 1.0F);
/* call SumDim function */
_SumDim(a, b, c, 1);
_SumDim(cMe, b, 1);
cUser = SumDim(*a, *b, 1);
/* check results */
cpuTest = c->CheckData(answer->data, aUnitNum) &&
cMe->CheckData(answer->data, aUnitNum) &&
cUser.CheckData(answer->data, aUnitNum);
#ifdef USE_CUDA
/* GPU test */
bool gpuTest = true;
/* create tensor */
XTensor * aGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
XTensor * bGPU = NewTensor(bOrder, bDimSize, X_FLOAT, 1.0F, 0);
XTensor * cGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
XTensor * cMeGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
XTensor cUserGPU;
/* Initialize variables */
aGPU->SetZeroAll();
cMe->SetZeroAll();
_SetDataFixedFloat(bGPU, 1.0F);
/* call sum function */
_SumDim(aGPU, bGPU, cGPU, 1);
_SumDim(cMeGPU, bGPU, 1);
cUserGPU = SumDim(*aGPU, *bGPU, 1);
/* check results */
gpuTest = cGPU->CheckData(answer->data, aUnitNum) &&
cMeGPU->CheckData(answer->data, aUnitNum) &&
cUserGPU.CheckData(answer->data, aUnitNum);
/* destroy variables */
delete a;
delete b;
delete c;
delete cMe;
delete answer;
delete aGPU;
delete bGPU;
delete cGPU;
delete cMeGPU;
delete[] aDimSize;
delete[] bDimSize;
return cpuTest && gpuTest;
#else
/* destroy variables */
delete a;
delete b;
delete c;
delete cMe;
delete answer;
delete[] aDimSize;
delete[] bDimSize;
return cpuTest;
#endif // USE_CUDA
}
/* other cases */ /* other cases */
/* /*
TODO!! TODO!!
...@@ -280,6 +500,24 @@ bool TestSumDim() ...@@ -280,6 +500,24 @@ bool TestSumDim()
else else
XPRINT(0, stdout, ">> case 2 passed!\n"); XPRINT(0, stdout, ">> case 2 passed!\n");
/* case 3 test */
caseFlag = TestSumDim3();
if (!caseFlag) {
returnFlag = false;
XPRINT(0, stdout, ">> case 3 failed!\n");
}
else
XPRINT(0, stdout, ">> case 3 passed!\n");
///* case 4 test */
//caseFlag = TestSumDim4();
//if (!caseFlag) {
// returnFlag = false;
// XPRINT(0, stdout, ">> case 4 failed!\n");
//}
//else
// XPRINT(0, stdout, ">> case 4 passed!\n");
/* other cases test */ /* other cases test */
/* /*
TODO!! TODO!!
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论