即,在两个市场分别花费74元和75元。可以看出,利用张量可以对多样、复杂的问题进行建模,比如,可以进一步扩展上述问题中$a$、$b$、$c$的定义,把它们定义成更高阶的张量,处理不同时间、不同市场、不同菜谱的情况,但是不论情况如何变化,都可以用同一个公式$c = a \times b^T$来描述问题。
即,在两个市场分别花费74元和75元。可以看出,利用张量可以对多样、复杂的问题进行建模,比如,可以进一步扩展上述问题中\\(a\\)、\\(b\\)、\\(c\\)的定义,把它们定义成更高阶的张量,处理不同时间、不同市场、不同菜谱的情况,但是不论情况如何变化,都可以用同一个公式\\(c = a \times b^T\\)来描述问题。