Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
杨迪
NiuTrans.Tensor
Commits
ea3f2a21
Commit
ea3f2a21
authored
Jul 22, 2018
by
xiaotong
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
new code for Split
parent
7ac8e731
显示空白字符变更
内嵌
并排
正在显示
6 个修改的文件
包含
147 行增加
和
4 行删除
+147
-4
source/network/XBackwardFunc.cpp
+2
-0
source/network/XBackwardMath.cpp
+6
-0
source/network/XBackwardShape.cpp
+93
-0
source/network/XBackwardShape.h
+22
-3
source/network/XNet.cpp
+21
-1
source/network/XNet.h
+3
-0
没有找到文件。
source/network/XBackwardFunc.cpp
查看文件 @
ea3f2a21
...
...
@@ -63,6 +63,8 @@ void XFuncGrad::MakeGrad(XTensor * node)
else
{
ShowNTErrors
(
"Wrong activation function type!"
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
/* indicates whether the node is for an activation function */
...
...
source/network/XBackwardMath.cpp
查看文件 @
ea3f2a21
...
...
@@ -75,6 +75,8 @@ void XMathGrad::GradSum(XTensor * node)
_Sum
(
a
->
grad
,
node
->
grad
,
a
->
grad
);
_Sum
(
b
->
grad
,
node
->
grad
,
b
->
grad
,
beta
);
node
->
visitMark
=
NODE_FINISHED
;
}
/*
...
...
@@ -99,6 +101,8 @@ void XMathGrad::GradMultiply(XTensor * node)
CheckNTErrors
(
XTensor
::
IsSameShaped
(
a
,
b
),
"Wrong sized input tensors!"
);
_Multiply
(
node
->
grad
,
b
,
a
->
grad
,
1.0
F
);
_Multiply
(
node
->
grad
,
a
,
b
->
grad
,
1.0
F
);
node
->
visitMark
=
NODE_FINISHED
;
}
/*
...
...
@@ -167,6 +171,8 @@ void XMathGrad::GradMatrixMul(XTensor * node)
/* dE/db = a * dE/dc * \alpha */
_MatrixMul
(
a
,
X_NOTRANS
,
dedc
,
X_NOTRANS
,
dedb
,
alpha
,
1.0
F
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
}
source/network/XBackwardShape.cpp
查看文件 @
ea3f2a21
...
...
@@ -55,6 +55,13 @@ bool XShapeGrad::IsShapeOP(XTensor * node)
return
(
income
.
typeID
&
DATA_BASE
)
!=
0
;
}
/* post processing of a node */
void
XShapeGrad
::
PostProcessing
(
XTensor
*
node
,
int
typeID
)
{
if
(
typeID
==
SHAPE_SPLIT_LIST
)
GradSplitListPost
(
node
);
}
/*
gradient for merge
for
...
...
@@ -134,6 +141,8 @@ void XShapeGrad::GradMerge(XTensor * node)
gradInputSmall
.
data
=
NULL
;
delete
[]
dims
;
node
->
visitMark
=
NODE_FINISHED
;
}
/*
...
...
@@ -213,6 +222,87 @@ void XShapeGrad::GradMergeList(XTensor * node)
gradSmall
.
data
=
NULL
;
delete
[]
dims
;
}
node
->
visitMark
=
NODE_FINISHED
;
}
/*
gradient computation for split:
for
c = split(a)
we have
dE/da = merge(dE/dc)
>> node - the node (c) for backward computation
*/
void
GradSplit
(
XTensor
*
node
)
{
XLink
&
income
=
node
->
income
;
XTensor
*
input
=
income
.
tails
[
0
];
int
whereToSplit
=
income
.
GetParamInt
(
0
);
int
splitNum
=
income
.
GetParamInt
(
1
);
CheckNTErrors
(
income
.
tailNum
==
1
,
"Wrong input tensor number for SPLIT!"
);
CheckNTErrors
(
node
->
order
==
input
->
order
+
1
,
"Wrong tensor orders!"
);
CheckNTErrors
(
splitNum
==
node
->
dimSize
[
0
],
"Wrong split number!"
);
XNoder
::
MakeGrad
(
input
);
/* we can simply merge the gradient tensor
if the input is used in spliting only */
if
(
input
->
outgo
.
tailNum
==
1
)
_Merge
(
node
->
grad
,
input
->
grad
,
whereToSplit
+
1
,
0
);
/* if the tensor is used somewhere else, we need another SUM
for gradient accumulation */
else
{
int
*
dims
=
new
int
[
input
->
order
];
memcpy
(
dims
,
input
->
dimSize
,
sizeof
(
int
)
*
input
->
order
);
dims
[
0
]
=
-
dims
[
0
];
XTensor
inputGradTMP
(
input
->
order
,
dims
,
input
->
dataType
,
input
->
denseRatio
,
input
->
devID
,
input
->
mem
);
_Merge
(
node
->
grad
,
&
inputGradTMP
,
whereToSplit
+
1
,
0
);
_Sum
(
input
->
grad
,
&
inputGradTMP
,
input
->
grad
);
delete
[]
dims
;
}
node
->
visitMark
=
NODE_FINISHED
;
}
/*
gradient computation for spliting
where we return the list of the splits
for
list(c_1, ...) = split(a)
we have
dE/da = merge(dE/c_1, ...)
>> node - the node (c) for backward computation
*/
void
XShapeGrad
::
GradSplitList
(
XTensor
*
node
)
{
XLink
&
income
=
node
->
income
;
XTensor
*
input
=
income
.
tails
[
0
];
CheckNTErrors
(
income
.
tailNum
==
1
,
"Wrong input tensor number for SPLIT!"
);
CheckNTErrors
(
node
->
order
==
input
->
order
+
1
,
"Wrong tensor orders!"
);
node
->
visitMark
=
NODE_DOING
;
}
/*
gradient computation for spliting where we return
the list of the splits : list(c_1, ...) = split(a).
this method is called only when all nodes of spliting
have been processed. We do this in a post-processing
manner because we can fuze multiple memory copy jobs
one time. This is good for system speed up.
>> node - the node (c) for backward computation
*/
void
XShapeGrad
::
GradSplitListPost
(
XTensor
*
node
)
{
}
/*
...
...
@@ -239,6 +329,8 @@ void XShapeGrad::GradUnsqueeze(XTensor * node)
CheckNTErrors
(
output
->
unitNum
=
input
->
unitNum
*
dSize
,
"Wrong tensor size!"
);
_ReduceSum
(
output
->
grad
,
input
->
grad
,
dim
);
node
->
visitMark
=
NODE_FINISHED
;
}
}
\ No newline at end of file
source/network/XBackwardShape.h
查看文件 @
ea3f2a21
...
...
@@ -40,18 +40,37 @@ public:
static
bool
IsShapeOP
(
XTensor
*
node
);
/* post processing of a node */
static
void
PostProcessing
(
XTensor
*
node
,
int
typeId
);
private
:
/* gradient for merge: c = merge(a, b, ...) */
/* gradient
computation
for merge: c = merge(a, b, ...) */
static
void
GradMerge
(
XTensor
*
node
);
/* gradient for merging a list of tensors : c = merge(list(a, b, ...)) */
/* gradient
computation
for merging a list of tensors : c = merge(list(a, b, ...)) */
static
void
GradMergeList
(
XTensor
*
node
);
/* gradient for unsqueezing a tensor : c = unsqueeze(a) */
/* gradient computation for split: c = split(a) */
static
void
GradSplit
(
XTensor
*
node
);
/* gradient computation for spliting where we return the list of the splits : list(c_1, ...) = split(a) */
static
void
GradSplitList
(
XTensor
*
node
);
/* gradient computation for spliting where we return the list of the splits : list(c_1, ...) = split(a).
this method is called only when all nodes of spliting have been processed. We do this in a post-processing
manner because we can fuze multiple memory copy jobs one time. This is good for system speed up. */
static
void
GradSplitListPost
(
XTensor
*
node
);
/* gradient computation for unsqueezing a tensor : c = unsqueeze(a) */
static
void
GradUnsqueeze
(
XTensor
*
node
);
};
}
...
...
source/network/XNet.cpp
查看文件 @
ea3f2a21
...
...
@@ -176,6 +176,10 @@ void XNet::BackwardNode(XTensor * node)
return
;
if
(
!
XNoder
::
IsLeaf
(
node
)){
/* post processing for parent nodes */
BackwardNodePost
(
node
);
/* process the current node */
if
(
XMathGrad
::
IsMathOP
(
node
))
XMathGrad
::
MakeGrad
(
node
);
else
if
(
XFuncGrad
::
IsFunc
(
node
))
...
...
@@ -186,8 +190,24 @@ void XNet::BackwardNode(XTensor * node)
ShowNTErrors
(
"Wrong node type!"
);
}
}
}
/*
backward computation (in post processing) for a given node
>> node - the node whose parent nodes are not processed yet. So
we do the job at the child node.
*/
void
XNet
::
BackwardNodePost
(
XTensor
*
node
)
{
bool
isSplitList
=
false
;
XLink
&
outgo
=
node
->
outgo
;
for
(
int
i
=
0
;
i
<
outgo
.
tailNum
;
i
++
){
if
(
outgo
.
tails
[
i
]
->
income
.
typeID
==
SHAPE_SPLIT_LIST
)
isSplitList
=
true
;
}
node
->
visitMark
=
NODE_FINISHED
;
if
(
isSplitList
)
XShapeGrad
::
PostProcessing
(
node
,
SHAPE_SPLIT_LIST
);
}
/*
...
...
source/network/XNet.h
查看文件 @
ea3f2a21
...
...
@@ -73,6 +73,9 @@ struct XNet
/* backward computation for a given node */
void
BackwardNode
(
XTensor
*
node
);
/* backward computation (in post processing) for a given node */
void
BackwardNodePost
(
XTensor
*
node
);
/* traverse the net and find the topological order by
depth-first search (Tarjan's algorithm) */
void
Traverse
(
XTensor
&
root
);
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论