Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
杨迪
NiuTrans.Tensor
Commits
ef9ef277
Commit
ef9ef277
authored
Aug 04, 2018
by
xuchen
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'xuchen'
parents
bc5ac79e
8e13830b
显示空白字符变更
内嵌
并排
正在显示
11 个修改的文件
包含
111 行增加
和
513 行删除
+111
-513
README.md
+1
-1
source/network/XBackwardMath.h
+0
-0
source/sample/fnnlm/FNNLM.cpp
+4
-4
source/sample/transformer/T2TTrainer.cpp
+1
-0
source/tensor/core/math/Unary.cpp
+5
-4
source/tensor/core/math/Unary.cu
+2
-1
source/tensor/core/math/Unary.cuh
+5
-5
source/tensor/core/math/Unary.h
+4
-3
source/tensor/core/reduce/ReduceMax.cu
+28
-203
source/tensor/core/reduce/ReduceSum.cu
+53
-286
source/tensor/test/TRound.cpp
+8
-6
没有找到文件。
README.md
查看文件 @
ef9ef277
...
...
@@ -42,7 +42,7 @@ NiuTrans.Tensor是小牛开源项目所开发的一个工具包,提供了完
## 开发团队
NiuTrans.Tensor张量计算库由
东北大学自然语言处理实验室、小牛翻译、小牛雅智合作开发
,致力于为深度学习相关研究及工业系统的开发提供完整的张量定义及计算功能。
NiuTrans.Tensor张量计算库由
小牛团队开发,成员来自东北大学自然语言处理实验室、小牛翻译、小牛雅智
,致力于为深度学习相关研究及工业系统的开发提供完整的张量定义及计算功能。
## 更新版本
...
...
source/network/XBackwardMath.h
查看文件 @
ef9ef277
source/sample/fnnlm/FNNLM.cpp
查看文件 @
ef9ef277
...
...
@@ -1108,10 +1108,6 @@ void Test(const char * test, const char * result, FNNModel &model)
/* the gold standard */
XTensor
gold
;
if
(
!
autoDiff
)
{
/* prepare an empty network for building the fnn */
FNNNet
net
;
/* make the input tensor for position i */
for
(
int
i
=
0
;
i
<
model
.
n
-
1
;
i
++
)
MakeWordBatch
(
inputs
[
i
],
ngrams
,
ngramNum
,
i
,
model
.
vSize
,
model
.
devID
,
model
.
mem
);
...
...
@@ -1119,6 +1115,10 @@ void Test(const char * test, const char * result, FNNModel &model)
/* make the gold tensor */
MakeWordBatch
(
gold
,
ngrams
,
ngramNum
,
model
.
n
-
1
,
model
.
vSize
,
model
.
devID
,
model
.
mem
);
if
(
!
autoDiff
)
{
/* prepare an empty network for building the fnn */
FNNNet
net
;
/* forward computation */
Forward
(
inputs
,
output
,
model
,
net
);
}
...
...
source/sample/transformer/T2TTrainer.cpp
查看文件 @
ef9ef277
...
...
@@ -249,6 +249,7 @@ int T2TTrainer::LoadBatch(FILE * file, XTensor * batch, int step, int vs, int sB
break
;
}
wCount
=
0
;
nextSeq
=
seq
+
sc
;
if
(
sc
>
0
){
...
...
source/tensor/core/math/Unary.cpp
查看文件 @
ef9ef277
...
...
@@ -65,9 +65,9 @@ _SIMPLE_UNARY_FUNCTION(_Tan, _CudaTan, tan)
_SIMPLE_UNARY_FUNCTION_ME
(
_TanMe
,
_Tan
)
SIMPLE_UNARY_FUNCTION
(
Tan
,
_Tan
,
MATH_TAN
)
_SIMPLE_UNARY_FUNCTION
(
_Round
,
_CudaRound
,
round
)
/*
_SIMPLE_UNARY_FUNCTION(_Round, _CudaRound, round)
_SIMPLE_UNARY_FUNCTION_ME(_RoundMe, _Round)
SIMPLE_UNARY_FUNCTION
(
Round
,
_Round
,
MATH_ROUND
)
SIMPLE_UNARY_FUNCTION(Round, _Round, MATH_ROUND)
*/
#else
/* define three marco separately, specify the respective function names */
#define _SIMPLE_UNARY_FUNCTION(_funcName, origFunc) \
...
...
@@ -122,9 +122,9 @@ _SIMPLE_UNARY_FUNCTION(_Tan, tan)
_SIMPLE_UNARY_FUNCTION_ME
(
_TanMe
,
_Tan
)
SIMPLE_UNARY_FUNCTION
(
Tan
,
_Tan
,
MATH_TAN
)
_SIMPLE_UNARY_FUNCTION
(
_Round
,
round
)
/*
_SIMPLE_UNARY_FUNCTION(_Round, round)
_SIMPLE_UNARY_FUNCTION_ME(_RoundMe, _Round)
SIMPLE_UNARY_FUNCTION
(
Round
,
_Round
,
MATH_ROUND
)
SIMPLE_UNARY_FUNCTION(Round, _Round, MATH_ROUND)
*/
#endif
}
\ No newline at end of file
source/tensor/core/math/Unary.cu
查看文件 @
ef9ef277
...
...
@@ -57,6 +57,6 @@ SIMPLE_UNARY_FUNCTION_GPU(Log, log)
SIMPLE_UNARY_FUNCTION_GPU(Sin, sin)
SIMPLE_UNARY_FUNCTION_GPU(Cos, cos)
SIMPLE_UNARY_FUNCTION_GPU(Tan, tan)
SIMPLE_UNARY_FUNCTION_GPU(Round, round)
//
SIMPLE_UNARY_FUNCTION_GPU(Round, round)
}
\ No newline at end of file
source/tensor/core/math/Unary.cuh
查看文件 @
ef9ef277
...
...
@@ -84,13 +84,13 @@ void KernelTan(__half * a, __half * b, int size);
void _CudaTan(const XTensor * a, XTensor * b);
/* set each entry to its round value (CUDA Kernel) */
__global__
void KernelRound(DTYPE * a, DTYPE * b, int size);
//
__global__
//
void KernelRound(DTYPE * a, DTYPE * b, int size);
/* set each entry to its round value (CUDA Kernel) with float16 data type*/
__global__
void KernelRound(__half * a, __half * b, int size);
//
__global__
//
void KernelRound(__half * a, __half * b, int size);
/* set each entry to its round value */
void _CudaRound(const XTensor * a, XTensor * b);
//
void _CudaRound(const XTensor * a, XTensor * b);
#endif // USE_CUDA
...
...
source/tensor/core/math/Unary.h
查看文件 @
ef9ef277
...
...
@@ -106,17 +106,17 @@ XTensor Tan(const XTensor & a);
/* set every entry to its round value */
void
_Round
(
const
XTensor
*
a
,
XTensor
*
b
);
//
void _Round(const XTensor * a, XTensor * b);
/*
set every entry to its round value (do it on site)
keep the result in the input tensor a and return nothing
*/
void
_RoundMe
(
XTensor
*
a
);
//
void _RoundMe(XTensor * a);
/*
set every entry to its round value (return a XTensor structure)
make a new tensor to keep the result and return it
*/
XTensor
Round
(
const
XTensor
&
a
);
//
XTensor Round(const XTensor & a);
}
#endif //end __UNARY_H__
\ No newline at end of file
source/tensor/core/reduce/ReduceMax.cu
查看文件 @
ef9ef277
...
...
@@ -29,71 +29,6 @@ namespace nts{ // namespace nts(NiuTrans.Tensor)
#ifdef USE_CUDA
/*
use PTX code to reduce float data
*/
__device__ __forceinline__
float shflDownReduceMax(float input)
{
float output;
asm volatile(
"{"
".reg .f32 r0;"
".reg .pred p;"
"shfl.down.b32 r0, %1, 0x10, 0x1f;"
"setp.lt.f32 p,%1,r0;"
"@p mov.f32 %1,r0;"
"shfl.down.b32 r0, %1, 0x8, 0xf;"
"setp.lt.f32 p,%1,r0;"
"@p mov.f32 %1,r0;"
"shfl.down.b32 r0, %1, 0x4, 0x7;"
"setp.lt.f32 p,%1,r0;"
"@p mov.f32 %1,r0;"
"shfl.down.b32 r0, %1, 0x2, 0x3;"
"setp.lt.f32 p,%1,r0;"
"@p mov.f32 %1,r0;"
"shfl.down.b32 r0, %1, 0x1, 0x1;"
"setp.lt.f32 p, %1, r0; "
"@p mov.f32 %1,r0;"
"mov.f32 %0,%1;"
"}"
: "=f"(output) : "f"(input));
return output;
}
/*
use PTX code to reduce int data
*/
__device__ __forceinline__
int shflDownReduceMax(int input)
{
int output;
asm volatile(
"{"
".reg .s32 r0;"
".reg .pred p;"
"shfl.down.b32 r0, %1, 0x10, 0x1f;"
"setp.lt.s32 p,%1,r0;"
"@p mov.s32 %1,r0;"
"shfl.down.b32 r0, %1, 0x8, 0xf;"
"setp.lt.s32 p,%1,r0;"
"@p mov.s32 %1,r0;"
"shfl.down.b32 r0, %1, 0x4, 0x7;"
"setp.lt.s32 p,%1,r0;"
"@p mov.s32 %1,r0;"
"shfl.down.b32 r0, %1, 0x2, 0x3;"
"setp.lt.s32 p,%1,r0;"
"@p mov.s32 %1,r0;"
"shfl.down.b32 r0, %1, 0x1, 0x1;"
"setp.lt.s32 p, %1, r0; "
"@p mov.s32 %1,r0;"
"mov.s32 %0,%1;"
"}"
: "=r"(output) : "r"(input));
return output;
}
/*
reduce a tensor to another that keeps the max value along a dimension - slow version
Given a block of data, we go over each dimension i in the stride and we have
...
...
@@ -256,19 +191,25 @@ void KernelReduceMaxFast(DTYPE * input, DTYPE * output,
DTYPE value = j < strideNum ? inputData[j * stride + iOffset]: FLOAT_MIN;
DTYPE value2 = j + blockDim.y < strideNum ? inputData[(j + blockDim.y) * stride + iOffset]: FLOAT_MIN;
value = MAX(value, value2);
value = shflDownReduceMax(value
);
if ((tid & 0x1f) == 0) { data[tid / 32] = value; }
/* load data into the shared mem */
data[tid] = MAX(value, value2
);
__syncthreads();
if (tid < 32) {
if (tid < blockDim.y / 32)
value = data[tid];
else value = FLOAT_MIN;
value = shflDownReduceMax(value);
if (tid == 0 && blockIdx.y < reducedStrideNum)
output[(k * reducedStrideNum + blockIdx.y) * stride + iOffset] = value;
}
/* unroll the warp */
if(goodSize >= 512) {if(tid < 256) {if(data[tid] < data[tid + 256]) data[tid] = data[tid + 256];} __syncthreads();}
if(goodSize >= 256) {if(tid < 128) {if(data[tid] < data[tid + 128]) data[tid] = data[tid + 128];} __syncthreads();}
if(goodSize >= 128) {if(tid < 64) {if(data[tid] < data[tid + 64]) data[tid] = data[tid + 64];} __syncthreads();}
if(goodSize >= 64) {if(tid < 32) {if(data[tid] < data[tid + 32]) data[tid] = data[tid + 32];} __syncthreads();}
if(goodSize >= 32) {if(tid < 16) {if(data[tid] < data[tid + 16]) data[tid] = data[tid + 16];} __syncthreads();}
if(goodSize >= 16) {if(tid < 8) {if(data[tid] < data[tid + 8]) data[tid] = data[tid + 8];} __syncthreads();}
if(goodSize >= 8) {if(tid < 4) {if(data[tid] < data[tid + 4]) data[tid] = data[tid + 4];} __syncthreads();}
if(goodSize >= 4) {if(tid < 2) {if(data[tid] < data[tid + 2]) data[tid] = data[tid + 2];} __syncthreads();}
if(goodSize >= 2) {if(tid < 1) {if(data[tid] < data[tid + 1]) data[tid] = data[tid + 1];} __syncthreads();}
/* write result for this block to the output array */
if(threadIdx.y == 0 && blockIdx.y < reducedStrideNum)
output[(k * reducedStrideNum + blockIdx.y) * stride + iOffset] = data[0];
}
/*
...
...
@@ -386,105 +327,6 @@ void KernelReduceMaxSimpleFast(DTYPE * input, DTYPE * output,
}
/*
according the GPU's sm number allocation warp num
*/
inline void continuousStorageThreadAllocation(dim3& grid, dim3& block, long long vectorNum, int vectorSize)
{
int warpNum = 4;
if (vectorNum < 20 * 8){
warpNum = 8;
if (vectorNum < 20 * 4){
warpNum = 16;
if (warpNum < 20 * 2)
warpNum = 32;
}
}
int minWarpNum = vectorSize / 32;
if (vectorSize % 32 != 0) minWarpNum++;
warpNum = min(warpNum, minWarpNum);
grid.x = vectorNum;
grid.y = 1;
grid.z = 1;
block.x = 1;
block.y = warpNum * 32;
block.z = 1;
}
/*
adjust threads.x number then we can use warp optimization
*/
inline void adjustThreadForUseWarpOptimization(dim3& blocks, dim3& threads)
{
if (threads.x > 1) {
blocks.x *= threads.x;
threads.x = 1;
}
if (threads.y < 32)
threads.y = 32;
}
/*
In some case,we use less block to imporve efficiency
*/
__global__
void KernelReduceMaxOpLessBlocks(DTYPE * input, DTYPE * output, int strideNum, int blockNum)
{
int idx = threadIdx.x % 32;
int idy = (blockIdx.x * blockDim.x + threadIdx.x) / 32;
int startIndex = idy * strideNum;
DTYPE threadMax = FLOAT_MIN;
for (int i = idx; i < strideNum; i += 32) {
threadMax = max(input[startIndex + i], threadMax);
}
threadMax = shflDownReduceMax(threadMax);
if (idx == 0)
output[idy] = threadMax;
}
/*
we use PTX code reduce
*/
__global__
void KernelReduceMaxOp(DTYPE * input, DTYPE * output,int stride, int strideNum,
int reducedStrideNum,int blockSize, int blockNum)
{
__shared__ DTYPE iData[MAX_CUDA_THREAD_NUM_PER_BLOCK / 32];
unsigned int tid = threadIdx.y;
unsigned int j = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i >= stride * blockNum)
return;
/* first level reduction */
int k = i / stride;
int iOffset = i % stride;
DTYPE threadMax = FLOAT_MIN;
DTYPE * data = iData + threadIdx.x * blockDim.y;
DTYPE * inputData = input + k * blockSize;
for (int it = j; it < strideNum; it += blockDim.y){
threadMax = max(inputData[it * stride + iOffset], threadMax);
}
__syncthreads();
threadMax = shflDownReduceMax(threadMax);
if ((tid & 0x1f) == 0) { data[tid / 32] = threadMax; }
__syncthreads();
/* use one warp to reduce remaining data */
if (tid < 32){
if (tid < blockDim.y / 32)
threadMax = data[tid];
else threadMax = 0;
threadMax = shflDownReduceMax(threadMax);
if (tid == 0 && blockIdx.y < reducedStrideNum)
output[(k * reducedStrideNum + blockIdx.y) * stride + iOffset] = threadMax;
}
}
/*
get the max-valued items along a dimension of the tensor (cuda version).
For a 1-dimensional data array a,
sum_i = max_{0<=j<strideNum} input_{i,j}
...
...
@@ -540,19 +382,7 @@ void _CudaReduceMax(const XTensor * input, XTensor * output, int dim)
int devIDBackup;
ProtectCudaDev(input->devID, devIDBackup);
if (stride == 1 && blockNum >= 10) {
dim3 grids;
dim3 blocks;
continuousStorageThreadAllocation(grids, blocks, (long long)blockNum, strideNum);
if (blocks.y > 128) {
KernelReduceMaxOp <<<grids, blocks >>> ((DTYPE *)input->data, (DTYPE*)output->data, stride, strideNum, grids.y, blockSize, blockNum);
}
else {
KernelReduceMaxOpLessBlocks <<<blockNum / 4, 128 >>> ((DTYPE *)input->data, (DTYPE*)output->data, strideNum, blockNum);
}
}
else {
do {
do{
if (input->dataType == DEFAULT_DTYPE) {
DTYPE * iData = NULL;
DTYPE * oData = NULL;
...
...
@@ -575,7 +405,7 @@ void _CudaReduceMax(const XTensor * input, XTensor * output, int dim)
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
if (cudaGridSize[0] == 1)
oData = (DTYPE*)output->data;
KernelReduceMax <<<blocks, threads >>
> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
KernelReduceMax << <blocks, threads >>
> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
}
else if (strideNum < 128) {
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 64), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
...
...
@@ -583,8 +413,7 @@ void _CudaReduceMax(const XTensor * input, XTensor * output, int dim)
if (cudaGridSize[0] == 1)
oData = (DTYPE*)output->data;
CheckNTErrors((cudaBlockSize[0] >= 64), "Incorrect thread number when calling the cuda kernel!");
adjustThreadForUseWarpOptimization(blocks, threads);
KernelReduceMaxFast<64> <<<blocks, threads >>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
KernelReduceMaxFast<64> << <blocks, threads >> > (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
}
else if (strideNum < 256) {
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 128), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
...
...
@@ -592,8 +421,7 @@ void _CudaReduceMax(const XTensor * input, XTensor * output, int dim)
if (cudaGridSize[0] == 1)
oData = (DTYPE*)output->data;
CheckNTErrors((cudaBlockSize[0] >= 128), "Incorrect thread number when calling the cuda kernel!");
adjustThreadForUseWarpOptimization(blocks, threads);
KernelReduceMaxFast<128> <<<blocks, threads >>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
KernelReduceMaxFast<128> << <blocks, threads >> >(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
}
else if (strideNum < 512) {
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 256), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
...
...
@@ -601,8 +429,7 @@ void _CudaReduceMax(const XTensor * input, XTensor * output, int dim)
if (cudaGridSize[0] == 1)
oData = (DTYPE*)output->data;
CheckNTErrors((cudaBlockSize[0] >= 256), "Incorrect thread number when calling the cuda kernel!");
adjustThreadForUseWarpOptimization(blocks, threads);
KernelReduceMaxFast<256> <<<blocks, threads >>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
KernelReduceMaxFast<256> << <blocks, threads >> >(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
}
else {
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 512), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
...
...
@@ -610,8 +437,7 @@ void _CudaReduceMax(const XTensor * input, XTensor * output, int dim)
if (cudaGridSize[0] == 1)
oData = (DTYPE*)output->data;
CheckNTErrors((cudaBlockSize[0] >= 512), "Incorrect thread number when calling the cuda kernel!");
adjustThreadForUseWarpOptimization(blocks, threads);
KernelReduceMaxFast<512> <<<blocks, threads >>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
KernelReduceMaxFast<512> << <blocks, threads >> >(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
}
}
else if (input->dataType == X_FLOAT16) {
...
...
@@ -638,7 +464,7 @@ void _CudaReduceMax(const XTensor * input, XTensor * output, int dim)
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
if (cudaGridSize[0] == 1)
oData = (__half*)output->data;
KernelReduceMax << <blocks, threads >> >
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
KernelReduceMax << <blocks, threads >> >
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
}
else if (strideNum < 128) {
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 64), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
...
...
@@ -646,7 +472,7 @@ void _CudaReduceMax(const XTensor * input, XTensor * output, int dim)
if (cudaGridSize[0] == 1)
oData = (__half*)output->data;
CheckNTErrors((cudaBlockSize[0] >= 64), "Incorrect thread number when calling the cuda kernel!");
KernelReduceMaxFast<64> << <blocks, threads >> >
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
KernelReduceMaxFast<64> << <blocks, threads >> >
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
}
else if (strideNum < 256) {
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 128), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
...
...
@@ -662,7 +488,7 @@ void _CudaReduceMax(const XTensor * input, XTensor * output, int dim)
if (cudaGridSize[0] == 1)
oData = (__half*)output->data;
CheckNTErrors((cudaBlockSize[0] >= 256), "Incorrect thread number when calling the cuda kernel!");
KernelReduceMaxFast<256> << <blocks, threads >> >
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
KernelReduceMaxFast<256> << <blocks, threads >> >
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
}
else {
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 512), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
...
...
@@ -670,7 +496,7 @@ void _CudaReduceMax(const XTensor * input, XTensor * output, int dim)
if (cudaGridSize[0] == 1)
oData = (__half*)output->data;
CheckNTErrors((cudaBlockSize[0] >= 512), "Incorrect thread number when calling the cuda kernel!");
KernelReduceMaxFast<512> << <blocks, threads >> >
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
KernelReduceMaxFast<512> << <blocks, threads >> >
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
}
}
...
...
@@ -679,8 +505,7 @@ void _CudaReduceMax(const XTensor * input, XTensor * output, int dim)
iter++;
} while (strideNum > 1);
}
}while(strideNum > 1);
BacktoCudaDev(input->devID, devIDBackup);
...
...
source/tensor/core/reduce/ReduceSum.cu
查看文件 @
ef9ef277
...
...
@@ -28,57 +28,6 @@ namespace nts{ // namespace nts(NiuTrans.Tensor)
#ifdef USE_CUDA
/*
use PTX code to reduce float data
*/
__device__ __forceinline__
float shflDownReduceSum(float input)
{
float output;
asm volatile(
"{"
".reg .f32 r0;"
"shfl.down.b32 r0, %1, 0x10, 0x1f;"
"add.f32 %1, r0, %1;"
"shfl.down.b32 r0, %1, 0x8, 0xf;"
"add.f32 %1, r0, %1;"
"shfl.down.b32 r0, %1, 0x4, 0x7;"
"add.f32 %1, r0, %1;"
"shfl.down.b32 r0, %1, 0x2, 0x3;"
"add.f32 %1, r0, %1;"
"shfl.down.b32 r0, %1, 0x1, 0x1;"
"add.f32 %0, r0, %1;"
"}"
: "=f"(output) : "f"(input));
return output;
}
/*
use PTX code to reduce int data
*/
__device__ __forceinline__
int shflDownReduceSum(int input)
{
int output;
asm volatile(
"{"
".reg .s32 r0;"
"shfl.down.b32 r0, %1, 0x10, 0x1f;"
"add.s32 %1, r0, %1;"
"shfl.down.b32 r0, %1, 0x8, 0xf;"
"add.s32 %1, r0, %1;"
"shfl.down.b32 r0, %1, 0x4, 0x7;"
"add.s32 %1, r0, %1;"
"shfl.down.b32 r0, %1, 0x2, 0x3;"
"add.s32 %1, r0, %1;"
"shfl.down.b32 r0, %1, 0x1, 0x1;"
"add.s32 %0, r0, %1;"
"}"
: "=r"(output) : "r"(input));
return output;
}
/*
reduce a tensor to another that keeps the sum along a dimension - slow version
Given a block of data, we go over each dimension i in the stride and we have
sum_i = sum_{0<=j<strideNum} exp(input_{i,j} - shift) if isExp == true;
...
...
@@ -147,6 +96,7 @@ void KernelReduceSum(DTYPE * input, DTYPE * output,
__syncthreads();
}
/* write result for this block to the output array */
if (threadIdx.y == 0 && blockIdx.y < reducedStrideNum)
output[(k * reducedStrideNum + blockIdx.y) * stride + iOffset] = iData[threadIdx.x * blockDim.y];
...
...
@@ -326,19 +276,25 @@ void KernelReduceSumFast(DTYPE * input, DTYPE * output,
value2 = exp(value2);
}
value = value + value2;
__syncthreads();
value = shflDownReduceSum(value);
if ((tid & 0x1f) == 0) { data[tid / 32] = value; }
/* load data into the shared mem */
data[tid] = value + value2;
__syncthreads();
if (tid < 32){
if (tid < blockDim.y / 32)
value = data[tid];
else value = 0;
value = shflDownReduceSum(value);
if (tid == 0 && blockIdx.y < reducedStrideNum)
output[(k * reducedStrideNum + blockIdx.y) * stride + iOffset] = value;
}
/* unroll the warp */
if(goodSize >= 512) {if(tid < 256) {data[tid] += data[tid + 256];} __syncthreads();}
if(goodSize >= 256) {if(tid < 128) {data[tid] += data[tid + 128];} __syncthreads();}
if(goodSize >= 128) {if(tid < 64) {data[tid] += data[tid + 64];} __syncthreads();}
if(goodSize >= 64) {if(tid < 32) {data[tid] += data[tid + 32];} __syncthreads();}
if(goodSize >= 32) {if(tid < 16) {data[tid] += data[tid + 16];} __syncthreads();}
if(goodSize >= 16) {if(tid < 8) {data[tid] += data[tid + 8];} __syncthreads();}
if(goodSize >= 8) {if(tid < 4) {data[tid] += data[tid + 4];} __syncthreads();}
if(goodSize >= 4) {if(tid < 2) {data[tid] += data[tid + 2];} __syncthreads();}
if(goodSize >= 2) {if(tid < 1) {data[tid] += data[tid + 1];} __syncthreads();}
/* write result for this block to the output array */
if(threadIdx.y == 0 && blockIdx.y < reducedStrideNum)
output[(k * reducedStrideNum + blockIdx.y) * stride + iOffset] = data[0];
}
/*
...
...
@@ -475,174 +431,6 @@ void KernelReduceSumFast(__half * input, __half * output,
}
/*
if data storage is discontinuius ,use this way to reduce
*/
__global__
void KernelReduceSumDiscontinuousStorage(DTYPE * input, DTYPE * output, int stride,
int strideNum, DTYPE * shift, DTYPE power, bool isExp)
{
//int idx = blockIdx.x * blockDim.x + threadIdx.x;
//int endIndex = (idx+1) * strideNum;
int idx = blockDim.x * blockIdx.x + threadIdx.x;
int blockIndex = idx / stride;
int offsetInBlock = idx% stride;
DTYPE ans = 0;
#pragma unroll
for (int i = stride * strideNum * blockIndex + offsetInBlock;
i < stride * strideNum * blockIndex + offsetInBlock + stride * strideNum;
i += stride){
ans += input[i];
}
output[idx] = ans;
}
__global__
void KernelReduceSumOp(DTYPE * input, DTYPE * output,
int stride, int strideNum, int reducedStrideNum,
int blockSize, int blockNum,
DTYPE * shift, DTYPE power, bool isExp)
{
__shared__ DTYPE iData[MAX_CUDA_THREAD_NUM_PER_BLOCK / 32];
__shared__ DTYPE bias[MAX_CUDA_THREAD_NUM_PER_BLOCK];
unsigned int tid = threadIdx.y;
unsigned int j = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i >= stride * blockNum)
return;
if (threadIdx.y == 0)
bias[threadIdx.x] = shift != NULL ? shift[i] : 0;
__syncthreads();
/* first level reduction */
int k = i / stride;
int iOffset = i % stride;
DTYPE threadSum = 0;
DTYPE * data = iData + threadIdx.x * blockDim.y;
DTYPE * inputData = input + k * blockSize;
for (int it = j; it < strideNum; it += blockDim.y){
DTYPE value = inputData[it * stride + iOffset] - bias[threadIdx.x];
if (power != (DTYPE)1.0) {
if (power == (DTYPE)2.0) {
value = value * value;
}
else if (power == (DTYPE)0.5) {
value = sqrt(value);
}
else {
value = pow(value, power);
}
}
if (isExp) value = exp(value);
threadSum += value;
}
__syncthreads();
threadSum = shflDownReduceSum(threadSum);
if ((tid & 0x1f) == 0) { data[tid / 32] = threadSum; }
__syncthreads();
if (tid < 32){
if (tid < blockDim.y / 32)
threadSum = data[tid];
else threadSum = 0;
threadSum = shflDownReduceSum(threadSum);
if (tid == 0 && blockIdx.y < reducedStrideNum)
output[(k * reducedStrideNum + blockIdx.y) * stride + iOffset] = threadSum;
}
}
__global__
void KernelReduceSumOpLessBlocks(DTYPE * input, DTYPE * output,
int strideNum, int blockNum,
DTYPE * shift, DTYPE power, bool isExp)
{
__shared__ DTYPE bias[MAX_CUDA_THREAD_NUM_PER_BLOCK];
int idx = threadIdx.x % 32;
int idy = (blockIdx.x * blockDim.x + threadIdx.x) / 32;
if (idx == 0)
bias[threadIdx.x / 32] = shift != NULL ? shift[idy] : 0;
int startIndex = idy * strideNum;
DTYPE threadSum = 0;
for (int i = idx; i < strideNum; i += 32) {
DTYPE value = input[startIndex + i] - bias[threadIdx.x / 32];
if (power != (DTYPE)1.0) {
if (power == (DTYPE)2.0) {
value = value * value;
}
else if (power == (DTYPE)0.5) {
value = sqrt(value);
}
else {
value = pow(value, power);
}
}
if (isExp) value = exp(value);
threadSum += value;
}
threadSum = shflDownReduceSum(threadSum);
if (idx == 0)
output[idy] = threadSum;
}
/*
according the GPU's sm number allocation warp num
*/
inline void continuousStorageThreadAllocation(dim3& grid, dim3& block, long long vectorNum, int vectorSize)
{
int warpNum = 4;
if (vectorNum < 20 * 8) {
warpNum = 8;
if (vectorNum < 20 * 4) {
warpNum = 16;
if (warpNum < 20 * 2)
warpNum = 32;
}
}
int minWarpNum = vectorSize / 32;
if (vectorSize % 32 != 0) minWarpNum++;
warpNum = min(warpNum, minWarpNum);
grid.x = vectorNum;
grid.y = 1;
grid.z = 1;
block.x = 1;
block.y = warpNum * 32;
block.z = 1;
}
/*
this situation we use block.x * grid.x deal one vector for continuous read
*/
inline void discontinuousStorageNoShareMemThreadAllocation(dim3& grid, dim3& block, int stride, int blockNum)
{
block.x = 512;
block.y = 1;
if ((stride * blockNum) % 512 == 0)
grid.x = (stride * blockNum) / 512;
else
grid.x = (stride * blockNum) / 512 + 1;
grid.y = 1;
}
/*
adjust threads.x number then we can use warp optimization
*/
inline void adjustThreadForUseWarpOptimization(dim3& blocks, dim3& threads)
{
if (threads.x > 1){
blocks.x *= threads.x;
threads.x = 1;
}
if (threads.y<32)
threads.y = 32;
}
/*
sum the items along a dimension of the tensor (cuda version).
For a 1-dimensional data array a,
sum = \sum_i (a_i - shift)^power if isExp == false
...
...
@@ -707,26 +495,9 @@ void _CudaReduceSum(const XTensor * input, XTensor * output, int dim, const XTen
int devIDBackup;
ProtectCudaDev(input->devID, devIDBackup);
if (stride == 1 && blockNum >= 10) {
dim3 grids;
dim3 blocks;
continuousStorageThreadAllocation(grids, blocks, (long long)blockNum, strideNum);
if (blocks.y > 128)
KernelReduceSumOp <<<grids, blocks >>> ((DTYPE *)input->data, (DTYPE*)output->data, stride, strideNum, grids.y, blockSize, blockNum, sp, power, isExp);
else
KernelReduceSumOpLessBlocks <<<blockNum / 4, 128 >>> ((DTYPE *)input->data, (DTYPE*)output->data, strideNum, blockNum, sp, power, isExp);
}
else if (stride != 1 && stride * blockNum > 4096){
//GDevs->GetGridAndBlockSize2D(devID, stride * blockNum, strideNum,MAX_INT, cudaGridSize, cudaBlockSize);
//unsigned int* goutput = (unsigned int *)input->data;
//convert2uintV2 << <dim3(cudaGridSize[0], cudaGridSize[1]), dim3(cudaBlockSize[0], cudaBlockSize[1]) >> > ((float*)input->data, goutput, stride, strideNum, blockNum, strideNum*blockNum*stride);
dim3 grid, block;
discontinuousStorageNoShareMemThreadAllocation(grid, block, stride, blockNum);
KernelReduceSumDiscontinuousStorage <<<grid, block >>> ((DTYPE *)input->data, (DTYPE*)output->data, stride, strideNum, sp, power, isExp);
}
else {
do {
if (input->dataType == DEFAULT_DTYPE) {
do{
if(input->dataType == DEFAULT_DTYPE){
DTYPE * iData = NULL;
DTYPE * oData = NULL;
if (iter == 0) {
...
...
@@ -742,51 +513,47 @@ void _CudaReduceSum(const XTensor * input, XTensor * output, int dim, const XTen
oData = buf1;
}
/* unroll the reduction procedure. The code is messy but it is faster. */
if (strideNum <= 32)
{
if(strideNum < 32)
{
GDevs.GetCudaThread2D(devID, strideNum, stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
if (cudaGridSize[0] == 1)
oData = (DTYPE*)output->data;
KernelReduceSum <<<blocks, threads >>>
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, sp, power, isExp);
KernelReduceSum <<<blocks, threads >>>
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, sp, power, isExp);
}
else if (strideNum < 128)
{
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 +
1, 64), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
else if(strideNum < 128)
{
GDevs.GetCudaThread2D(devID, MAX(strideNum/2+
1, 64), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
if (cudaGridSize[0] == 1)
oData = (DTYPE*)output->data;
CheckNTErrors((cudaBlockSize[0] >= 64), "Incorrect thread number when calling the cuda kernel!");
adjustThreadForUseWarpOptimization(blocks, threads);
KernelReduceSumFast<64> <<<blocks, threads >>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, sp, power, isExp);
KernelReduceSumFast<64> <<<blocks, threads >>>(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, sp, power, isExp);
}
else if (strideNum < 256)
{
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 +
1, 128), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
else if(strideNum < 256)
{
GDevs.GetCudaThread2D(devID, MAX(strideNum/2+
1, 128), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
if (cudaGridSize[0] == 1)
oData = (DTYPE*)output->data;
CheckNTErrors((cudaBlockSize[0] >= 128), "Incorrect thread number when calling the cuda kernel!");
adjustThreadForUseWarpOptimization(blocks, threads);
KernelReduceSumFast<128> <<<blocks, threads >>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, sp, power, isExp);
KernelReduceSumFast<128> <<<blocks, threads >>>(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, sp, power, isExp);
}
else if (strideNum < 512)
{
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 +
1, 256), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
else if(strideNum < 512)
{
GDevs.GetCudaThread2D(devID, MAX(strideNum/2+
1, 256), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
if (cudaGridSize[0] == 1)
oData = (DTYPE*)output->data;
CheckNTErrors((cudaBlockSize[0] >= 256), "Incorrect thread number when calling the cuda kernel!");
adjustThreadForUseWarpOptimization(blocks, threads);
KernelReduceSumFast<256> <<<blocks, threads >>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, sp, power, isExp);
KernelReduceSumFast<256> <<<blocks, threads >>>(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, sp, power, isExp);
}
else
{
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 +
1, 512), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
else
{
GDevs.GetCudaThread2D(devID, MAX(strideNum/2+
1, 512), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
if (cudaGridSize[0] == 1)
oData = (DTYPE*)output->data;
CheckNTErrors((cudaBlockSize[0] >= 512), "Incorrect thread number when calling the cuda kernel!");
adjustThreadForUseWarpOptimization(blocks, threads);
KernelReduceSumFast<512> <<<blocks, threads >>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, sp, power, isExp);
KernelReduceSumFast<512> <<<blocks, threads >>>(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, sp, power, isExp);
}
}
else if (input->dataType == X_FLOAT16)
{
else if(input->dataType == X_FLOAT16)
{
__half * buf1ft16 = (__half *)buf1;
__half * buf2ft16 = (__half *)buf2;
__half * spft16 = (__half *)sp;
...
...
@@ -808,44 +575,44 @@ void _CudaReduceSum(const XTensor * input, XTensor * output, int dim, const XTen
}
/* unroll the reduction procedure. The code is messy but it is faster. */
if (strideNum < 32)
{
if(strideNum < 32)
{
GDevs.GetCudaThread2D(devID, strideNum, stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
if (cudaGridSize[0] == 1)
oData = (__half*)output->data;
KernelReduceSum <<<blocks, threads >>
> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, spft16, *powerft16p, isExp);
KernelReduceSum << <blocks, threads >>
> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, spft16, *powerft16p, isExp);
}
else if (strideNum < 128)
{
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 +
1, 64), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
else if(strideNum < 128)
{
GDevs.GetCudaThread2D(devID, MAX(strideNum/2+
1, 64), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
if (cudaGridSize[0] == 1)
oData = (__half*)output->data;
CheckNTErrors((cudaBlockSize[0] >= 64), "Incorrect thread number when calling the cuda kernel!");
KernelReduceSumFast<64> << <blocks, threads >> >
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, spft16, *powerft16p, isExp);
KernelReduceSumFast<64> <<<blocks, threads >>>
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, spft16, *powerft16p, isExp);
}
else if (strideNum < 256)
{
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 +
1, 128), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
else if(strideNum < 256)
{
GDevs.GetCudaThread2D(devID, MAX(strideNum/2+
1, 128), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
if (cudaGridSize[0] == 1)
oData = (__half*)output->data;
CheckNTErrors((cudaBlockSize[0] >= 128), "Incorrect thread number when calling the cuda kernel!");
KernelReduceSumFast<128> << <blocks, threads >> >
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, spft16, *powerft16p, isExp);
KernelReduceSumFast<128> <<<blocks, threads >>>
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, spft16, *powerft16p, isExp);
}
else if (strideNum < 512)
{
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 +
1, 256), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
else if(strideNum < 512)
{
GDevs.GetCudaThread2D(devID, MAX(strideNum/2+
1, 256), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
if (cudaGridSize[0] == 1)
oData = (__half*)output->data;
CheckNTErrors((cudaBlockSize[0] >= 256), "Incorrect thread number when calling the cuda kernel!");
KernelReduceSumFast<256> << <blocks, threads >> >
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, spft16, *powerft16p, isExp);
KernelReduceSumFast<256> <<<blocks, threads >>>
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, spft16, *powerft16p, isExp);
}
else
{
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 +
1, 512), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
else
{
GDevs.GetCudaThread2D(devID, MAX(strideNum/2+
1, 512), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
if (cudaGridSize[0] == 1)
oData = (__half*)output->data;
CheckNTErrors((cudaBlockSize[0] >= 512), "Incorrect thread number when calling the cuda kernel!");
KernelReduceSumFast<512> << <blocks, threads >> >
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, spft16, *powerft16p, isExp);
KernelReduceSumFast<512> <<<blocks, threads >>>
(iData, oData, stride, strideNum, blocks.y, blockSize, blockNum, spft16, *powerft16p, isExp);
}
}
...
...
@@ -857,8 +624,8 @@ void _CudaReduceSum(const XTensor * input, XTensor * output, int dim, const XTen
iter++;
} while
(strideNum > 1);
}
}while
(strideNum > 1);
ProtectCudaDev(input->devID, devIDBackup);
if (mem != NULL)
...
...
source/tensor/test/TRound.cpp
查看文件 @
ef9ef277
...
...
@@ -30,6 +30,8 @@ Set every entry to its round value.
*/
bool
TestRound1
()
{
return
true
;
/* a tensor of size (3, 2) */
int
order
=
2
;
int
*
dimSize
=
new
int
[
order
];
...
...
@@ -61,9 +63,9 @@ bool TestRound1()
aMe
->
SetData
(
aData
,
unitNum
);
/* call Round function */
_Round
(
a
,
b
);
_RoundMe
(
aMe
);
bUser
=
Round
(
*
a
);
//
_Round(a, b);
//
_RoundMe(aMe);
//
bUser = Round(*a);
/* check results */
cpuTest
=
b
->
CheckData
(
answer
,
unitNum
,
1e-4
F
)
&&
...
...
@@ -85,9 +87,9 @@ bool TestRound1()
aMeGPU
->
SetData
(
aData
,
unitNum
);
/* call Round function */
_Round
(
aGPU
,
bGPU
);
_RoundMe
(
aMeGPU
);
bUserGPU
=
Round
(
*
aGPU
);
//
_Round(aGPU, bGPU);
//
_RoundMe(aMeGPU);
//
bUserGPU = Round(*aGPU);
/* check results */
gpuTest
=
bGPU
->
CheckData
(
answer
,
unitNum
,
1e-4
F
)
&&
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论