/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: Lin Ye (email: linye2015@outlook.com) 2018-06-15 */ #include "TMultiply.h" namespace nts { // namespace nts(NiuTrans.Tensor) /* case 1: element-wise product of two tensors c(i) = a(i)*b(i) + \alpha * c(i) In this case, (2, 2) �� (2, 2) -> (2, 2), leadingDim=0, alpha=0. */ bool TestMultiply1() { /* a source tensor of size (2, 2) */ int sOrder1 = 2; int * sDimSize1 = new int[sOrder1]; sDimSize1[0] = 2; sDimSize1[1] = 2; int sUnitNum1 = 1; for (int i = 0; i < sOrder1; i++) sUnitNum1 *= sDimSize1[i]; /* a source tensor of size (2, 2) */ int sOrder2 = 2; int * sDimSize2 = new int[sOrder2]; sDimSize2[0] = 2; sDimSize2[1] = 2; int sUnitNum2 = 1; for (int i = 0; i < sOrder2; i++) sUnitNum2 *= sDimSize2[i]; /* a target tensor of size (2, 2) */ int tOrder = 2; int * tDimSize = new int[tOrder]; tDimSize[0] = 2; tDimSize[1] = 2; int tUnitNum = 1; for (int i = 0; i < tOrder; i++) tUnitNum *= tDimSize[i]; DTYPE sData1[2][2] = { {0.0F, 1.0F}, {2.0F, 3.0F} }; DTYPE sData2[2][2] = { {0.0F, 1.0F}, {2.0F, 3.0F} }; DTYPE answer[2][2] = { {0.0F, 1.0F}, {4.0F, 9.0F} }; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * s1 = NewTensor(sOrder1, sDimSize1); XTensor * s2 = NewTensor(sOrder2, sDimSize2); XTensor * t = NewTensor(tOrder, tDimSize); XTensor * tMe = NewTensor(tOrder, tDimSize); XTensor tUser; /* initialize variables */ s1->SetData(sData1, sUnitNum1); tMe->SetData(sData1, sUnitNum1); s2->SetData(sData2, sUnitNum2); t->SetZeroAll(); /* call Multiply function */ _Multiply(s1, s2, t, 0, 0); _MultiplyMe(tMe, s2, 0, 0); tUser = Multiply(*s1, *s2, 0); /* check results */ cpuTest = t->CheckData(answer, tUnitNum) && tMe->CheckData(answer, tUnitNum) && tUser.CheckData(answer, tUnitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensor */ XTensor * sGPU1 = NewTensor(sOrder1, sDimSize1, X_FLOAT, 1.0F, 0); XTensor * sGPU2 = NewTensor(sOrder2, sDimSize2, X_FLOAT, 1.0F, 0); XTensor * tGPU = NewTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0); XTensor * tMeGPU = NewTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0); XTensor tUserGPU; /* Initialize variables */ sGPU1->SetData(sData1, sUnitNum1); tMeGPU->SetData(sData1, sUnitNum1); sGPU2->SetData(sData2, sUnitNum2); tGPU->SetZeroAll(); /* call Multiply function */ _Multiply(sGPU1, sGPU2, tGPU, 0, 0); _MultiplyMe(tMeGPU, sGPU2, 0, 0); tUserGPU = Multiply(*sGPU1, *sGPU2, 0); /* check results */ gpuTest = tGPU->CheckData(answer, tUnitNum) && tMeGPU->CheckData(answer, tUnitNum) && tUserGPU.CheckData(answer, tUnitNum); /* destroy variables */ delete s1; delete s2; delete t; delete tMe; delete sGPU1; delete sGPU2; delete tGPU; delete tMeGPU; delete[] sDimSize1; delete[] sDimSize2; delete[] tDimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete s1; delete s2; delete t; delete tMe; delete[] sDimSize1; delete[] sDimSize2; delete[] tDimSize; return cpuTest; #endif // USE_CUDA } /* other cases */ /* TODO!! */ /* test for Multiply Function */ bool TestMultiply() { XPRINT(0, stdout, "[TEST Multiply] element-wise product of two tensors \n"); bool returnFlag = true, caseFlag = true; /* case 1 test */ caseFlag = TestMultiply1(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 1 failed!\n"); } else XPRINT(0, stdout, ">> case 1 passed!\n"); /* other cases test */ /* TODO!! */ if (returnFlag) { XPRINT(0, stdout, ">> All Passed!\n"); } else XPRINT(0, stdout, ">> Failed!\n"); XPRINT(0, stdout, "\n"); return returnFlag; } } // namespace nts(NiuTrans.Tensor)