/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-25 */ #include "HardTanH.h" #include "HardTanH.cuh" #include "../XDevice.h" namespace nts{ // namespace nts(NiuTrans.Tensor) #ifdef USE_CUDA /* hard tanh forward computation (Cuda kernel) y = 1 if x > 1 x if -1 <= x <= 1 -1 if x < -1 >> x - input data array >> y - output data array >> size - size of input/output */ __global__ void KernelHardtanhCompute(DTYPE * x, DTYPE * y, int size) { int i = blockDim.x * blockIdx.x + threadIdx.x; if (i < size){ DTYPE p = x[i]; if(p > (DTYPE)1.0) p = (DTYPE)1.0; else if(p < (DTYPE)-1.0) p = (DTYPE)-1.0; y[i] = p; } } /* hard tanh forward computation (Cuda version) y = 1 if x > 1 x if -1 <= x <= 1 -1 if x < -1 >> x - input tensor >> y - output tensor */ void _CudaHardTanH(const XTensor * x, XTensor * y) { CheckNTErrors(!x->isSparse && !y->isSparse, "The hard tanh activation function does not support sparse tensors."); int gridSize[3], blockSize[3]; GDevs.GetCudaThread(x->devID, x->unitNum, gridSize, blockSize); int devIDBackup; ProtectCudaDev(x->devID, devIDBackup); KernelHardtanhCompute<<<dim3(gridSize[0]), dim3(blockSize[0])>>>((DTYPE*)x->data, (DTYPE*)y->data, x->unitNum); BacktoCudaDev(x->devID, devIDBackup); } /* hard tanh backward computation of dE/dx (Cuda kernel) dy/dx = 1 if -1 <= x <= 1 0 otherwise >> dedy - dE/dy >> dedx - dE/dx >> y - y of the function >> x - x of the function >> size - size of y/x */ __global__ void KernelHardtanhBackward(DTYPE * dedy, DTYPE * dedx, DTYPE * x, int size) { int i = blockDim.x * blockIdx.x + threadIdx.x; if (i < size){ DTYPE s = x[i]; if(s > (DTYPE)1.0 || s < (DTYPE)-1.0) dedx[i] = 0; else dedx[i] = dedy[i]; } } /* backward computation (Cuda version) dE/dx = dE/dy * dy/dx hard tanh: y = 1 if x > 1 x if -1 <= x <= 1 -1 if x< -1 and dy/dx = 1 if -1 <= x <= 1 0 otherwise >> y - output of the hardtanh function >> x - input of the hardtanh function >> dedy - dE/dy >> dedx - dE/dx */ void _CudaHardTanHBackward(XTensor * y, XTensor * x, XTensor * dedy, XTensor * dedx) { int gridSize[3], blockSize[3]; GDevs.GetCudaThread(x->devID, x->unitNum, gridSize, blockSize); int devIDBackup; ProtectCudaDev(x->devID, devIDBackup); /* dE/dx = dE/dy * dy/dx */ KernelHardtanhBackward<<<dim3(gridSize[0]),dim3(blockSize[0])>>> ((DTYPE*)dedy->data, (DTYPE*)dedx->data, (DTYPE*)x->data, x->unitNum); BacktoCudaDev(x->devID, devIDBackup); } #endif } // namespace nts(NiuTrans.Tensor)