/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-25 */ #include "../XName.h" #include "../core/shape/IsSameShaped.h" #include <math.h> #include "Sigmoid.h" #include "Sigmoid.cuh" #include "../loss/LHeader.h" namespace nts{ // namespace nts(NiuTrans.Tensor) /* sigmoid function y = 1/(1+exp(-x)) >> x - input tensor >> y - result */ void _Sigmoid(const XTensor * x, XTensor * y) { CheckNTErrors(_IsSameShaped(x, y), "The input tensor and output tensor must have the same shape!") #ifdef USE_CUDA if(x->devID >= 0 || y->devID >= 0){ _CudaSigmoid(x, y); return; } #endif if(x->dataType == DEFAULT_DTYPE && y->dataType == DEFAULT_DTYPE){ DTYPE * ip = (DTYPE*)x->data; DTYPE * op = (DTYPE*)y->data; int n = x->GetSize(); for(int i = 0; i < n; i++){ DTYPE p = ip[i]; op[i] = (DTYPE)1.0/((DTYPE)1.0+(DTYPE)exp(-p)); } } else ShowNTErrors("TODO!"); } /* sigmoid function y = 1/(1+exp(-x)) (return an XTensor structure) make a new tensor to keep the result and return it >> x - input tensor << return - output tensor */ XTensor Sigmoid(const XTensor &x) { XTensor y(&x); y.SetTMPFlag(); /* call _Sigmoid function */ _Sigmoid(&x, &y); /* tensor connection */ if (x.enableGrad) { XLink::MakeLink(&x, NULL, &y, FUNC_SIGMOID); } return y; } void Sigmoid(const XTensor &x, XTensor &y) { if (!y.isInit || !IsSameShaped(y, x)) { InitTensorV2(&y, &x); } /* call _Sigmoid function */ _Sigmoid(&x, &y); if (x.enableGrad) { /* tensor connection */ XLink::MakeLink(&x, NULL, &y, FUNC_SIGMOID); } } /* backward computation dE/ds = dE/dy * dy/dx sigmoid: y = 1/(1+exp(-x)) and dy/dx = y * (1 - y) >> y - output of the function >> x - input of the function >> dedy - dE/dy >> dedx - dE/dx */ void _SigmoidBackward(XTensor * y, XTensor * x, XTensor * dedy, XTensor * dedx) { #ifdef USE_CUDA if(x->devID >= 0){ _CudaSigmoidBackward(y, x, dedy, dedx); return; } #endif DTYPE * dedyp = (DTYPE*)dedy->data; DTYPE * dedxp = (DTYPE*)dedx->data; DTYPE * op = (DTYPE*)y->data; int size = y->unitNum; /* dE/dx = dE/dy * dy/dx */ for(int i = 0; i < size; i++){ DTYPE y = op[i]; dedxp[i] = dedyp[i] * (DTYPE)y * ((DTYPE)1.0 - y); } } } // namespace nts(NiuTrans.Tensor)