/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: Lin Ye (email: linye2015@outlook.com) 2018-06-14 */ #include "TRectify.h" namespace nts { // namespace nts(NiuTrans.Tensor) /* case 1: test rectify function In this case, y = max(0, x) */ bool TestRectify1() { /* a tensor of size (2, 3) */ int order = 2; int * dimSize = new int[order]; dimSize[0] = 2; dimSize[1] = 3; int unitNum = 1; for (int i = 0; i < order; i++) unitNum *= dimSize[i]; DTYPE xData[2][3] = { {0.0F, -1.0F, 2.0F}, {3.0F, -4.0F, -5.0F} }; DTYPE answer[2][3] = { {0.0F, 0.0F, 2.0F}, {3.0F, 0.0F, 0.0F} }; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * x = NewTensor(order, dimSize); XTensor * y = NewTensor(order, dimSize); /* initialize variables */ x->SetData(xData, unitNum); y->SetZeroAll(); /* call Rectify function */ Rectify(x, y); /* check results */ cpuTest = y->CheckData(answer, unitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensor */ XTensor * xGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * yGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); /* Initialize variables */ xGPU->SetData(xData, unitNum); yGPU->SetZeroAll(); /* call Rectify function */ Rectify(xGPU, yGPU); /* check results */ gpuTest = yGPU->CheckData(answer, unitNum); /* destroy variables */ delete x; delete y; delete xGPU; delete yGPU; delete[] dimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete x; delete y; delete[] dimSize; return cpuTest; #endif // USE_CUDA } /* case 2: backward computation dE/dx = dE/dy * dy/dx rectified: y = max(0, x) In this case, lossName=CROSSENTROPY. */ bool TestRectify2() { /* a tensor of size (2, 3) */ int order = 2; int * dimSize = new int[order]; dimSize[0] = 2; dimSize[1] = 3; int unitNum = 1; for (int i = 0; i < order; i++) unitNum *= dimSize[i]; DTYPE xData[2][3] = { {1.0F, 1.0F, 2.0F}, {2.0F, 4.0F, 5.0F} }; DTYPE goldData[2][3] = { {1.0F, 1.0F, 1.0F}, {1.0F, 1.0F, 1.0F} }; DTYPE yAnswer[2][3] = { {1.0F, 1.0F, 2.0F}, {2.0F, 4.0F, 5.0F} }; DTYPE dedyAnswer[2][3] = { {-1.0F, -1.0F, -0.5F}, {-0.5F, -0.25F, -0.2F} }; DTYPE dedxAnswer[2][3] = { {-1.0F, -1.0F, -0.5F}, {-0.5F, -0.25F, -0.2F} }; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * x = NewTensor(order, dimSize); XTensor * y = NewTensor(order, dimSize); XTensor * gold = NewTensor(order, dimSize); XTensor * dedy = NewTensor(order, dimSize); XTensor * dedx = NewTensor(order, dimSize); /* initialize variables */ x->SetData(xData, unitNum); gold->SetData(goldData, unitNum); y->SetZeroAll(); dedy->SetZeroAll(); dedx->SetZeroAll(); /* call Rectify function */ Rectify(x, y); /* call RectifyBackward function */ RectifyBackward(gold, y, x, dedy, dedx, CROSSENTROPY); /* check results */ cpuTest = y->CheckData(yAnswer, unitNum, 1e-4F) && dedx->CheckData(dedxAnswer, unitNum, 1e-4F) && dedy->CheckData(dedyAnswer, unitNum, 1e-4F); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensors */ XTensor * xGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * yGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * goldGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * dedyGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * dedxGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); /* initialize variables */ xGPU->SetData(xData, unitNum); goldGPU->SetData(goldData, unitNum); yGPU->SetZeroAll(); dedyGPU->SetZeroAll(); dedxGPU->SetZeroAll(); /* call Rectify function */ Rectify(xGPU, yGPU); /* call rectifybackward function */ RectifyBackward(goldGPU, yGPU, xGPU, dedyGPU, dedxGPU, CROSSENTROPY); /* check results */ gpuTest = yGPU->CheckData(yAnswer, unitNum, 1e-4F) && dedxGPU->CheckData(dedxAnswer, unitNum, 1e-4F) && dedyGPU->CheckData(dedyAnswer, unitNum, 1e-4F); /* destroy variables */ delete x; delete y; delete dedy; delete dedx; delete gold; delete xGPU; delete yGPU; delete dedyGPU; delete dedxGPU; delete goldGPU; delete[] dimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete x; delete y; delete dedy; delete dedx; delete gold; delete[] dimSize; return cpuTest; #endif // USE_CUDA } /* other cases */ /* TODO!! */ /* test for Rectify Function */ bool TestRectify() { XPRINT(0, stdout, "[TEST RECTIFY] rectify function and its backward computation \n"); bool returnFlag = true, caseFlag = true; /* case 1 test */ caseFlag = TestRectify1(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 1 failed!\n"); } else XPRINT(0, stdout, ">> case 1 passed!\n"); /* case 2 test */ caseFlag = TestRectify2(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 2 failed!\n"); } else XPRINT(0, stdout, ">> case 2 passed!\n"); /* other cases test */ /* TODO!! */ if (returnFlag) { XPRINT(0, stdout, ">> All Passed!\n"); } else XPRINT(0, stdout, ">> Failed!\n"); XPRINT(0, stdout, "\n"); return returnFlag; } } // namespace nts(NiuTrans.Tensor)