/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2018, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: XIAO Tong (xiaotong@mail.neu.edu.cn) 2018-07-31 */ #ifndef __T2TATTENTION_H__ #define __T2TATTENTION_H__ #include "../../network/XNet.h" using namespace nts; namespace transformer { /* multi-head attention y(Q, K, V) = cat(head_1, head_2, ..., head_n) where head_i = Attention(Q * w_i^Q, K * w_i^K, V * w_i^V) attention(Q, K, V) = softmax(Q * K^T/d_k^0.5) V d_k = dimension size of K */ class T2TAttention { public: /* device id */ int devID; /* memory pool */ XMem * mem; /* head number */ int nhead; /* transformation matrix for K */ XTensor wk; /* transformation matrix for Q */ XTensor wq; /* transformation matrix for V */ XTensor wv; /* transformation after dot-product attention */ XTensor wa; XTensor wbig; /* size of transformed Q and K */ int dk; /* size of transformed V */ int dv; /* size of input Q, K and V */ int d; /* indicates whether the attention is masked */ bool isMasked; /* some positions can be ignored in attention. this is useful in lm where the first position needs special design for the attention model. */ int ignored; /* indicates whether the model is used for training */ bool isTraining; /* dropout probability */ DTYPE dropoutP; public: /* constructor */ T2TAttention(); /* de-constructor */ ~T2TAttention(); /* initialize the model */ void InitModel(int argc, char ** argv, bool myIsMasked, int myIgnored, int myDevID = -1, XMem * myMem = NULL); /* make the network */ XTensor Make(XTensor &k, XTensor &q, XTensor &v, XTensor &mask, bool isTraining); /* make the network given a big tensor that keeps keys, queries and values */ XTensor MakeBig(XTensor &kqv, XTensor &mask, bool isTraining); /* make the attention network given keys, queries and values (after linear transformation) */ XTensor MakeAttention(XTensor &k, XTensor &q, XTensor &v, XTensor &mask, bool isTraining); }; } #endif