/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: Xu Chen (email: hello_master1954@163.com) 2018-06-27 */ #include "TReduceSumSquared.h" namespace nts { // namespace nts(NiuTrans.Tensor) /* case 1: squared sum of the items along a dimension of the tensor. For a 1-dimensional data array a, sum = \sum_i (a_i - shift)^2. In this case, (2, 4) -> (4), dim = 0. */ bool TestReduceSumSquared1() { /* a input tensor of size (2, 4) */ int sOrder = 2; int * sDimSize = new int[sOrder]; sDimSize[0] = 2; sDimSize[1] = 4; int sUnitNum = 1; for (int i = 0; i < sOrder; i++) sUnitNum *= sDimSize[i]; /* a output tensor of size (4) */ int tOrder = 1; int * tDimSize = new int[tOrder]; tDimSize[0] = 4; int tUnitNum = 1; for (int i = 0; i < tOrder; i++) tUnitNum *= tDimSize[i]; /* a shift tensor of size (4) */ int shiftOrder = 1; int * shiftDimSize = new int[shiftOrder]; shiftDimSize[0] = 4; int shiftUnitNum = 1; for (int i = 0; i < shiftOrder; i++) shiftUnitNum *= shiftDimSize[i]; DTYPE sData[2][4] = { {0.0F, 1.0F, 2.0F, 3.0F}, {4.0F, 5.0F, 6.0F, 7.0F} }; DTYPE shiftData[4] = {1.0F, -1.0F, -1.0F, 0.0F}; DTYPE answer[4] = {10.0F, 40.0F, 58.0F, 58.0F}; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * s = NewTensor(sOrder, sDimSize); XTensor * t = NewTensor(tOrder, tDimSize); XTensor * shift = NewTensor(shiftOrder, shiftDimSize); XTensor tUser; /* initialize variables */ s->SetData(sData, sUnitNum); shift->SetData(shiftData, shiftUnitNum); t->SetZeroAll(); /* call ReduceSumSquared function */ _ReduceSumSquared(s, t, 0, shift); tUser = ReduceSumSquared(*s, 0, *shift); /* check results */ cpuTest = t->CheckData(answer, tUnitNum) && tUser.CheckData(answer, tUnitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensors */ XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * tGPU = NewTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0); XTensor * shiftGPU = NewTensor(shiftOrder, shiftDimSize, X_FLOAT, 1.0F, 0); XTensor tUserGPU; /* initialize variables */ sGPU->SetData(sData, sUnitNum); shiftGPU->SetData(shiftData, shiftUnitNum); tGPU->SetZeroAll(); /* call ReduceSumSquared function */ _ReduceSumSquared(sGPU, tGPU, 0, shiftGPU); tUserGPU = ReduceSumSquared(*sGPU, 0, *shiftGPU); /* check results */ gpuTest = tGPU->CheckData(answer, tUnitNum) && tUserGPU.CheckData(answer, tUnitNum); /* destroy variables */ delete s; delete t; delete shift; delete sGPU; delete tGPU; delete shiftGPU; delete[] sDimSize; delete[] tDimSize; delete[] shiftDimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete s; delete t; delete shift; delete[] sDimSize; delete[] tDimSize; delete[] shiftDimSize; return cpuTest; #endif // USE_CUDA } /* case 2: squared sum of the items along a dimension of the tensor. For a 1-dimensional data array a, sum = \sum_i (a_i - shift)^2. In this case, (2, 4) -> (2), dim = 1. */ bool TestReduceSumSquared2() { /* a input tensor of size (2, 4) */ int sOrder = 2; int * sDimSize = new int[sOrder]; sDimSize[0] = 2; sDimSize[1] = 4; int sUnitNum = 1; for (int i = 0; i < sOrder; i++) sUnitNum *= sDimSize[i]; /* a output tensor of size (2) */ int tOrder = 1; int * tDimSize = new int[tOrder]; tDimSize[0] = 2; int tUnitNum = 1; for (int i = 0; i < tOrder; i++) tUnitNum *= tDimSize[i]; /* a shift tensor of size (2) */ int shiftOrder = 1; int * shiftDimSize = new int[shiftOrder]; shiftDimSize[0] = 2; int shiftUnitNum = 1; for (int i = 0; i < shiftOrder; i++) shiftUnitNum *= shiftDimSize[i]; DTYPE sData[2][4] = { {0.0F, 1.0F, 2.0F, 3.0F}, {4.0F, 5.0F, 6.0F, 7.0F} }; DTYPE shiftData[2] = {-1.0F, 1.0F}; DTYPE answer[2] = {30.0F, 86.0F}; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * s = NewTensor(sOrder, sDimSize); XTensor * t = NewTensor(tOrder, tDimSize); XTensor * shift = NewTensor(shiftOrder, shiftDimSize); XTensor tUser; /* initialize variables */ s->SetData(sData, sUnitNum); shift->SetData(shiftData, shiftUnitNum); t->SetZeroAll(); /* call ReduceSumSquared function */ _ReduceSumSquared(s, t, 1, shift); tUser = ReduceSumSquared(*s, 1, *shift); /* check results */ cpuTest = t->CheckData(answer, tUnitNum) && tUser.CheckData(answer, tUnitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensors */ XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * tGPU = NewTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0); XTensor * shiftGPU = NewTensor(shiftOrder, shiftDimSize, X_FLOAT, 1.0F, 0); XTensor tUserGPU; /* initialize variables */ sGPU->SetData(sData, sUnitNum); shiftGPU->SetData(shiftData, shiftUnitNum); tGPU->SetZeroAll(); /* call ReduceSumSquared function */ _ReduceSumSquared(sGPU, tGPU, 1, shiftGPU); tUserGPU = ReduceSumSquared(*sGPU, 1, *shiftGPU); /* check results */ gpuTest = tGPU->CheckData(answer, tUnitNum) && tUserGPU.CheckData(answer, tUnitNum); /* destroy variables */ delete s; delete t; delete shift; delete sGPU; delete tGPU; delete shiftGPU; delete[] sDimSize; delete[] tDimSize; delete[] shiftDimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete s; delete t; delete shift; delete[] sDimSize; delete[] tDimSize; delete[] shiftDimSize; return cpuTest; #endif // USE_CUDA } /* other cases */ /* TODO!! */ /* test for ReduceSumSquared Function */ bool TestReduceSumSquared() { XPRINT(0, stdout, "[TEST ReduceSumSquared] squared sum of the items along a dimension of the tensor\n"); bool returnFlag = true, caseFlag = true; /* case 1 test */ caseFlag = TestReduceSumSquared1(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 1 failed!\n"); } else XPRINT(0, stdout, ">> case 1 passed!\n"); /* case 2 test */ caseFlag = TestReduceSumSquared2(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 1 failed!\n"); } else XPRINT(0, stdout, ">> case 1 passed!\n"); /* other cases test */ /* TODO!! */ if (returnFlag) { XPRINT(0, stdout, ">> All Passed!\n"); } else XPRINT(0, stdout, ">> Failed!\n"); XPRINT(0, stdout, "\n"); return returnFlag; } } // namespace nts(NiuTrans.Tensor)