/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: Lin Ye (email: linye2015@outlook.com) 2018-08-03 */ #include "../../XDevice.h" #include "../../XTensor.h" #include "Clip.h" #include "Clip.cuh" namespace nts { // namespace nts(NiuTrans.Tensor) #ifdef USE_CUDA /* set each entry to its clip value (CUDA Kernel) >> a - pointer to input data array >> b - pointer to output data array >> lower - the lower border >> upper - the upper border >> size - size of the data array */ __global__ void KernelClip(DTYPE * a, DTYPE * b, DTYPE lower, DTYPE upper, int size) { int i = blockDim.x * blockIdx.x + threadIdx.x; if (i < size) { if (a[i] > upper) b[i] = upper; else if (a[i] < lower) b[i] = lower; else b[i] = a[i]; } } /* set each entry to its clip value with float16 data type value (CUDA Kernel) This is for float16 computation >> a - pointer to input data array >> b - pointer to output data array >> lower - the lower border >> upper - the upper border >> size - size of the data array */ __global__ void KernelClip(__half * a, __half * b, DTYPE lower, DTYPE upper, int size) { return; } /* set each entry to its clip value >> a - input tensor we are processing >> b - output tensor we are processing >> lower - the lower border >> upper - the upper border */ void _CudaClip(const XTensor * a, XTensor * b, DTYPE lower, DTYPE upper) { CheckNTErrors((XTensor::IsSameShaped(a, b)), "Input tensors should have the same type!"); CheckNTErrors((a->isSparse == false), "TODO!"); int gridSize[3]; int blockSize[3]; GDevs.GetCudaThread(a->devID, a->unitNum, gridSize, blockSize); dim3 blocks(gridSize[0]); dim3 threads(blockSize[0]); int devIDBackup; ProtectCudaDev(a->devID, devIDBackup); if (a->dataType == DEFAULT_DTYPE) { KernelClip << <blocks, threads >> >((DTYPE*)a->data, (DTYPE*)b->data, lower, upper, a->unitNum); } else if (a->dataType == X_FLOAT16) { KernelClip << <blocks, threads >> >((__half*)a->data, (__half*)b->data, lower, upper, a->unitNum); } else { ShowNTErrors("TODO!"); } BacktoCudaDev(a->devID, devIDBackup); } /* clip backward computation of dE/dx (Cuda kernel) dy/dx = 1 if lower <= x <= upper 0 otherwise >> dedy - dE/dy >> dedx - dE/dx >> y - y of the function >> x - x of the function >> lower >> upper */ __global__ void KernelClipBackward(DTYPE * dedy, DTYPE * dedx, DTYPE * y, DTYPE * x, DTYPE lower, DTYPE upper, int size) { int i = blockDim.x * blockIdx.x + threadIdx.x; if (i < size) { DTYPE s = x[i]; if (s > upper || s < lower) dedx[i] = 0; else dedx[i] = dedy[i]; } } /* backward computation (Cuda version) dE/dx = dE/dy * dy/dx hard tanh: y = upper if x > upper x if lower <= x <= upper lower if x< lower and dy/dx = 1 if lower <= x <= upper 0 otherwise >> gold - gold standard to measure error (or loss) >> y - output of the function >> x - input of the function >> dedy - dE/dy >> dedx - dE/dx >> lossName - type of loss function, e.g., cross entropy */ void _CudaClipBackward(XTensor * y, XTensor * x, XTensor * dedy, XTensor * dedx, DTYPE lower, DTYPE upper) { if (x->dataType == DEFAULT_DTYPE && y->dataType == DEFAULT_DTYPE) { int gridSize[3], blockSize[3]; GDevs.GetCudaThread(x->devID, x->unitNum, gridSize, blockSize); int devIDBackup; ProtectCudaDev(x->devID, devIDBackup); /* dE/dx = dE/dy * dy/dx */ KernelClipBackward <<<dim3(gridSize[0]), dim3(blockSize[0])>>> ((DTYPE*)dedy->data, (DTYPE*)dedx->data, (DTYPE*)y->data, (DTYPE*)x->data, lower, upper, x->unitNum); BacktoCudaDev(x->devID, devIDBackup); } else ShowNTErrors("TODO!"); } #endif // USE_CUDA } // namespace nts(NiuTrans.Tensor)