Clip.cu 4.8 KB
Newer Older
1
/* NiuTrans.Tensor - an open-source tensor library
liyinqiao committed
2
* Copyright (C) 2017, Natural Language Processing Lab, Northeastern University.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: Lin Ye (email: linye2015@outlook.com) 2018-08-03
liyinqiao committed
20
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-06 float16/int added
21 22 23 24
*/

#include "../../XDevice.h"
#include "../../XTensor.h"
liyinqiao committed
25
#include "../shape/IsSameShaped.h"
26 27 28 29 30 31 32 33 34 35 36 37 38 39
#include "Clip.h"
#include "Clip.cuh"

namespace nts { // namespace nts(NiuTrans.Tensor)

#ifdef USE_CUDA
/*
set each entry to its clip value (CUDA Kernel)
>> a - pointer to input data array
>> b - pointer to output data array
>> lower - the lower border
>> upper - the upper border
>> size - size of the data array
*/
liyinqiao committed
40
template <class T>
41
__global__
liyinqiao committed
42
void KernelClip(T * a, T * b, T lower, T upper, int size)
43
{
liyinqiao committed
44
    int i = blockDim.x * blockIdx.x + threadIdx.x;
45

liyinqiao committed
46 47 48 49 50 51 52 53
    if (i < size) {
        if (a[i] > upper)
            b[i] = upper;
        else if (a[i] < lower)
            b[i] = lower;
        else
            b[i] = a[i];
    }
54 55 56 57 58 59 60 61 62 63 64
}

/*
set each entry to its clip value
>> a - input tensor we are processing
>> b - output tensor we are processing
>> lower - the lower border
>> upper - the upper border
*/
void _CudaClip(const XTensor * a, XTensor * b, DTYPE lower, DTYPE upper)
{
liyinqiao committed
65 66 67 68 69
    CheckNTErrors((_IsSameShaped(a, b)), "Input tensors should have the same type!");
    CheckNTErrors((a->isSparse == false), "TODO!");

    int gridSize[3];
    int blockSize[3];
70

liyinqiao committed
71
    GDevs.GetCudaThread(a->devID, a->unitNum, gridSize, blockSize);
72

liyinqiao committed
73 74
    dim3 blocks(gridSize[0]);
    dim3 threads(blockSize[0]);
75

liyinqiao committed
76 77
    int devIDBackup;
    ProtectCudaDev(a->devID, devIDBackup);
78

liyinqiao committed
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    if (a->dataType == DEFAULT_DTYPE) {
        KernelClip << <blocks, threads >> >((DTYPE*)a->data, (DTYPE*)b->data, lower, upper, a->unitNum);
    }
    else if (a->dataType == X_FLOAT16) {
#ifdef HALF_PRECISION
        half lower2 = __float2half(lower);
        half upper2 = __float2half(upper);
        KernelClip << <blocks, threads >> >((__half*)a->data, (__half*)b->data, lower2, upper2, a->unitNum);
#else
        ShowNTErrors("Recompile the code with HALF_PRECISION!");
#endif
    }
    else if (a->dataType == X_INT) {
        int lower2 = (int)lower;
        int upper2 = (int)upper;
94

liyinqiao committed
95 96 97 98 99 100 101 102
        KernelClip << <blocks, threads >> >((int *)a->data, (int *)b->data, lower2, upper2, a->unitNum);
    }
    else if (a->dataType == X_INT8) {
        ShowNTErrors("TODO!");
    }
    else {
        ShowNTErrors("TODO!");
    }
103

liyinqiao committed
104
    BacktoCudaDev(a->devID, devIDBackup);
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
}

/*
clip backward computation of dE/dx (Cuda kernel)

dy/dx = 1     if lower <= x <= upper
0     otherwise

>> dedy - dE/dy
>> dedx - dE/dx
>> y - y of the function
>> x - x of the function
>> lower 
>> upper 
*/
__global__
void KernelClipBackward(DTYPE * dedy, DTYPE * dedx, DTYPE * y, DTYPE * x, DTYPE lower, DTYPE upper, int size)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;

    if (i < size) {
        DTYPE s = x[i];
        if (s > upper || s < lower)
            dedx[i] = 0;
        else
            dedx[i] = dedy[i];
    }
}

/*
backward computation (Cuda version)

dE/dx = dE/dy * dy/dx

hard tanh: y =  upper    if x > upper
x    if lower <= x <= upper
lower    if x< lower

and dy/dx =  1    if lower <= x <= upper
0    otherwise

>> gold - gold standard to measure error (or loss)
>> y - output of the function
>> x - input of the function
>> dedy - dE/dy
>> dedx - dE/dx
>> lossName - type of loss function, e.g., cross entropy
*/
void _CudaClipBackward(XTensor * y, XTensor * x, XTensor * dedy, XTensor * dedx, DTYPE lower, DTYPE upper)
{
    if (x->dataType == DEFAULT_DTYPE && y->dataType == DEFAULT_DTYPE) {

        int gridSize[3], blockSize[3];

        GDevs.GetCudaThread(x->devID, x->unitNum, gridSize, blockSize);

        int devIDBackup;
        ProtectCudaDev(x->devID, devIDBackup);

        /* dE/dx = dE/dy * dy/dx */
        KernelClipBackward <<<dim3(gridSize[0]), dim3(blockSize[0])>>>
                             ((DTYPE*)dedy->data,
                              (DTYPE*)dedx->data,
                              (DTYPE*)y->data, (DTYPE*)x->data,
                              lower, upper,
                              x->unitNum);

        BacktoCudaDev(x->devID, devIDBackup);
    }
    else
        ShowNTErrors("TODO!");
}


#endif // USE_CUDA
} // namespace nts(NiuTrans.Tensor)