TReduceMean.cpp 6.69 KB
Newer Older
xiaotong committed
1
/* NiuTrans.Tensor - an open-source tensor library
liyinqiao committed
2
* Copyright (C) 2017, Natural Language Processing Lab, Northeastern University.
xiaotong committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: LI Yinqiao (email: li.yin.qiao.2012@hotmail.com) 2018-04-30
*/

liyinqiao committed
22
#include "../core/utilities/CheckData.h"
liyinqiao committed
23
#include "TReduceMean.h"
xiaotong committed
24 25

namespace nts { // namespace nt(NiuTrans.Tensor)
liyinqiao committed
26

liyinqiao committed
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/* case 1: get the mean value along a dimension of the tensor */
bool TestReduceMean1()
{
    /* a tensor of size (2, 4) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 2;
    sDimSize[1] = 4;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a tensor of size (4) */
    int tOrder1 = 1;
    int * tDimSize1 = new int[tOrder1];
    tDimSize1[0] = 4;

    int tUnitNum1 = 1;
    for (int i = 0; i < tOrder1; i++)
        tUnitNum1 *= tDimSize1[i];

    /* a tensor of size (2) */
    int tOrder2 = 1;
    int * tDimSize2 = new int[tOrder2];
    tDimSize2[0] = 2;

    int tUnitNum2 = 1;
    for (int i = 0; i < tOrder2; i++)
        tUnitNum2 *= tDimSize2[i];

liyinqiao committed
58 59 60 61
    DTYPE sData[2][4] = { {0.0F, 1.0F, 2.0F, 3.0F},
                          {4.0F, 5.0F, 6.0F, 7.0F} };
    DTYPE answer1[4] = {2.0F, 3.0F, 4.0F, 5.0F};
    DTYPE answer2[2] = {1.5F, 5.5F};
liyinqiao committed
62 63 64 65 66

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
liyinqiao committed
67 68 69
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * t1 = NewTensorV2(tOrder1, tDimSize1);
    XTensor * t2 = NewTensorV2(tOrder2, tDimSize2);
70 71
    XTensor tUser1;
    XTensor tUser2;
liyinqiao committed
72 73 74 75 76 77 78

    /* initialize variables */
    s->SetData(sData, sUnitNum);
    t1->SetZeroAll();
    t2->SetZeroAll();

    /* call ReduceMean function */
79 80
    _ReduceMean(s, t1, 0);
    _ReduceMean(s, t2, 1);
81 82
    tUser1 = ReduceMean(*s, 0);
    tUser2 = ReduceMean(*s, 1);
liyinqiao committed
83 84

    /* check results */
liyinqiao committed
85 86 87 88
    cpuTest = _CheckData(t1, answer1, tUnitNum1, 1e-4F) &&
              _CheckData(&tUser1, answer1, tUnitNum1, 1e-4F) &&
              _CheckData(t2, answer2, tUnitNum2, 1e-4F) &&
              _CheckData(&tUser2, answer2, tUnitNum2, 1e-4F);
xiaotong committed
89 90

#ifdef USE_CUDA
liyinqiao committed
91 92 93 94
    /* GPU test */
    bool gpuTest = true;

    /* create tensor */
liyinqiao committed
95 96 97
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU1 = NewTensorV2(tOrder1, tDimSize1, X_FLOAT, 1.0F, 0);
    XTensor * tGPU2 = NewTensorV2(tOrder2, tDimSize2, X_FLOAT, 1.0F, 0);
98 99
    XTensor tUserGPU1;
    XTensor tUserGPU2;
liyinqiao committed
100 101 102 103 104 105 106

    /* Initialize variables */
    sGPU->SetData(sData, sUnitNum);
    tGPU1->SetZeroAll();
    tGPU2->SetZeroAll();

    /* call ReduceMean function */
107 108
    _ReduceMean(sGPU, tGPU1, 0);
    _ReduceMean(sGPU, tGPU2, 1);
109 110
    tUserGPU1 = ReduceMean(*sGPU, 0);
    tUserGPU2 = ReduceMean(*sGPU, 1);
liyinqiao committed
111 112

    /* check results */
liyinqiao committed
113 114 115 116
    gpuTest = _CheckData(tGPU1, answer1, tUnitNum1, 1e-4F) &&
              _CheckData(&tUserGPU1, answer1, tUnitNum1, 1e-4F) &&
              _CheckData(tGPU2, answer2, tUnitNum2, 1e-4F) &&
              _CheckData(&tUserGPU2, answer2, tUnitNum2, 1e-4F);
liyinqiao committed
117 118 119 120 121 122 123 124 125 126 127 128 129

    /* destroy variables */
    delete s;
    delete t1;
    delete t2;
    delete sGPU;
    delete tGPU1;
    delete tGPU2;
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;
    
    return cpuTest && gpuTest;
xiaotong committed
130
#else
liyinqiao committed
131 132 133 134 135 136 137 138 139
    /* destroy variables */
    delete s;
    delete t1;
    delete t2;
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;

    return cpuTest;
xiaotong committed
140
#endif // USE_CUDA
liyinqiao committed
141 142
}

liyinqiao committed
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
/* case 2: get the mean value along a dimension of the scalar tensor */
bool TestReduceMean2()
{
    /* a tensor of size (4) */
    int sOrder = 1;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 4;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a scalar tensor */
    int tOrder = 0;
    int * tDimSize = new int[MAX_TENSOR_DIM_NUM];
    int tUnitNum = 1;

    DTYPE sData[4] = {0.0F, 1.0F, 2.0F, 3.0F};
    DTYPE answer[1] = {1.5F};

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * t = NewTensorV2(tOrder, tDimSize);
    XTensor tUser;

    /* initialize variables */
    s->SetData(sData, sUnitNum);
    t->SetZeroAll();

    /* call ReduceMean function */
    _ReduceMean(s, t, 0);
    tUser = ReduceMean(*s, 0);

    /* check results */
    cpuTest = _CheckData(t, answer, tUnitNum, 1e-4F) &&
              _CheckData(&tUser, answer, tUnitNum, 1e-4F);

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensor */
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensorV2(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
    XTensor tUserGPU;

    /* Initialize variables */
    sGPU->SetData(sData, sUnitNum);
    tGPU->SetZeroAll();

    /* call ReduceMean function */
    _ReduceMean(sGPU, tGPU, 0);
    tUserGPU = ReduceMean(*sGPU, 0);

    /* check results */
    gpuTest = _CheckData(tGPU, answer, tUnitNum, 1e-4F) &&
              _CheckData(&tUserGPU, answer, tUnitNum, 1e-4F);

    /* destroy variables */
    delete s;
    delete t;
    delete sGPU;
    delete tGPU;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest;
#endif // USE_CUDA
}

liyinqiao committed
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/* other cases */
/*
TODO!!
*/

/* test for ReduceMean Function */
bool TestReduceMean()
{
    XPRINT(0, stdout, "[TEST ReduceMean] get the mean value along a dimension of the tensor \n");
    bool returnFlag = true, caseFlag = true;

    /* case 1 test */
    caseFlag = TestReduceMean1();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");

liyinqiao committed
244 245 246 247 248 249 250 251 252
    /* case 2 test */
    caseFlag = TestReduceMean2();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 2 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 2 passed!\n");

liyinqiao committed
253 254 255 256 257 258 259
    ///* other cases test */
    ///*
    //TODO!!
    //*/

    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
xiaotong committed
260
    }
liyinqiao committed
261 262 263 264 265 266 267
    else
        XPRINT(0, stdout, ">> Failed!\n");

    XPRINT(0, stdout, "\n");

    return returnFlag;
}
xiaotong committed
268

liyinqiao committed
269
} // namespace nts(NiuTrans.Tensor)