TReduceSumSquared.cpp 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-06-27
*/

liyinqiao committed
22
#include "../core/utilities/CheckData.h"
23 24 25
#include "TReduceSumSquared.h"

namespace nts { // namespace nts(NiuTrans.Tensor)
liyinqiao committed
26 27 28 29 30

/* 
case 1: squared sum of the items along a dimension of the tensor. 
For a 1-dimensional data array a, sum = \sum_i (a_i - shift)^2.
In this case, (2, 4) -> (4), dim = 0.
liyinqiao committed
31
*/
32 33
bool TestReduceSumSquared1()
{
liyinqiao committed
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    /* a input tensor of size (2, 4) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 2;
    sDimSize[1] = 4;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a output tensor of size (4) */
    int tOrder = 1;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 4;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];

    /* a shift tensor of size (4) */
54 55 56 57 58 59 60 61
    int shiftOrder = 1;
    int * shiftDimSize = new int[shiftOrder];
    shiftDimSize[0] = 4;

    int shiftUnitNum = 1;
    for (int i = 0; i < shiftOrder; i++)
        shiftUnitNum *= shiftDimSize[i];

liyinqiao committed
62 63 64 65
    DTYPE sData[2][4] = { {0.0F, 1.0F, 2.0F, 3.0F},
                          {4.0F, 5.0F, 6.0F, 7.0F} };
    DTYPE shiftData[4] = {1.0F, -1.0F, -1.0F, 0.0F};
    DTYPE answer[4] = {10.0F, 40.0F, 58.0F, 58.0F};
66 67 68 69 70

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
71 72 73
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * t = NewTensorV2(tOrder, tDimSize);
    XTensor * shift = NewTensorV2(shiftOrder, shiftDimSize);
74
    XTensor tUser;
liyinqiao committed
75 76 77 78 79 80 81

    /* initialize variables */
    s->SetData(sData, sUnitNum);
    shift->SetData(shiftData, shiftUnitNum);
    t->SetZeroAll();

    /* call ReduceSumSquared function */
82
    _ReduceSumSquared(s, t, 0, shift);
83
    tUser = ReduceSumSquared(*s, 0, *shift);
liyinqiao committed
84 85

    /* check results */
liyinqiao committed
86
    cpuTest = _CheckData(t, answer, tUnitNum) && _CheckData(&tUser, answer, tUnitNum);
liyinqiao committed
87 88 89 90 91 92

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
93 94 95
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensorV2(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
    XTensor * shiftGPU = NewTensorV2(shiftOrder, shiftDimSize, X_FLOAT, 1.0F, 0);
96
    XTensor tUserGPU;
liyinqiao committed
97 98 99 100 101 102 103

    /* initialize variables */
    sGPU->SetData(sData, sUnitNum);
    shiftGPU->SetData(shiftData, shiftUnitNum);
    tGPU->SetZeroAll();

    /* call ReduceSumSquared function */
104
    _ReduceSumSquared(sGPU, tGPU, 0, shiftGPU);
105
    tUserGPU = ReduceSumSquared(*sGPU, 0, *shiftGPU);
liyinqiao committed
106 107

    /* check results */
liyinqiao committed
108
    gpuTest = _CheckData(tGPU, answer, tUnitNum) && _CheckData(&tUserGPU, answer, tUnitNum);
liyinqiao committed
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

    /* destroy variables */
    delete s;
    delete t;
    delete shift;
    delete sGPU;
    delete tGPU;
    delete shiftGPU;
    delete[] sDimSize;
    delete[] tDimSize;
    delete[] shiftDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t;
    delete shift;
    delete[] sDimSize;
    delete[] tDimSize;
    delete[] shiftDimSize;

    return cpuTest;
#endif // USE_CUDA
}

liyinqiao committed
135 136 137 138
/* 
case 2: squared sum of the items along a dimension of the tensor. 
For a 1-dimensional data array a, sum = \sum_i (a_i - shift)^2.
In this case, (2, 4) -> (2), dim = 1.
liyinqiao committed
139 140 141 142 143 144 145 146 147 148 149 150 151
*/
bool TestReduceSumSquared2()
{
    /* a input tensor of size (2, 4) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 2;
    sDimSize[1] = 4;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

liyinqiao committed
152
    /* a output tensor of size (2) */
liyinqiao committed
153 154 155 156 157 158 159 160
    int tOrder = 1;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 2;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];

liyinqiao committed
161
    /* a shift tensor of size (2) */
liyinqiao committed
162 163 164 165 166 167 168 169
    int shiftOrder = 1;
    int * shiftDimSize = new int[shiftOrder];
    shiftDimSize[0] = 2;

    int shiftUnitNum = 1;
    for (int i = 0; i < shiftOrder; i++)
        shiftUnitNum *= shiftDimSize[i];

liyinqiao committed
170 171 172 173
    DTYPE sData[2][4] = { {0.0F, 1.0F, 2.0F, 3.0F},
                          {4.0F, 5.0F, 6.0F, 7.0F} };
    DTYPE shiftData[2] = {-1.0F, 1.0F};
    DTYPE answer[2] = {30.0F, 86.0F};
liyinqiao committed
174 175 176 177 178

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
179 180 181
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * t = NewTensorV2(tOrder, tDimSize);
    XTensor * shift = NewTensorV2(shiftOrder, shiftDimSize);
182
    XTensor tUser;
183 184

    /* initialize variables */
liyinqiao committed
185
    s->SetData(sData, sUnitNum);
186
    shift->SetData(shiftData, shiftUnitNum);
liyinqiao committed
187
    t->SetZeroAll();
188 189

    /* call ReduceSumSquared function */
190
    _ReduceSumSquared(s, t, 1, shift);
191
    tUser = ReduceSumSquared(*s, 1, *shift);
192 193

    /* check results */
liyinqiao committed
194
    cpuTest = _CheckData(t, answer, tUnitNum) && _CheckData(&tUser, answer, tUnitNum);
195 196 197 198 199 200

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
201 202 203
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensorV2(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
    XTensor * shiftGPU = NewTensorV2(shiftOrder, shiftDimSize, X_FLOAT, 1.0F, 0);
204
    XTensor tUserGPU;
205 206

    /* initialize variables */
liyinqiao committed
207
    sGPU->SetData(sData, sUnitNum);
208
    shiftGPU->SetData(shiftData, shiftUnitNum);
liyinqiao committed
209
    tGPU->SetZeroAll();
210 211

    /* call ReduceSumSquared function */
212
    _ReduceSumSquared(sGPU, tGPU, 1, shiftGPU);
213
    tUserGPU = ReduceSumSquared(*sGPU, 1, *shiftGPU);
214 215

    /* check results */
liyinqiao committed
216
    gpuTest = _CheckData(tGPU, answer, tUnitNum) && _CheckData(&tUserGPU, answer, tUnitNum);
217 218

    /* destroy variables */
liyinqiao committed
219 220 221 222 223 224 225 226 227
    delete s;
    delete t;
    delete shift;
    delete sGPU;
    delete tGPU;
    delete shiftGPU;
    delete[] sDimSize;
    delete[] tDimSize;
    delete[] shiftDimSize;
228 229 230 231

    return cpuTest && gpuTest;
#else
    /* destroy variables */
liyinqiao committed
232 233 234 235 236 237
    delete s;
    delete t;
    delete shift;
    delete[] sDimSize;
    delete[] tDimSize;
    delete[] shiftDimSize;
238 239 240 241 242

    return cpuTest;
#endif // USE_CUDA
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
/*
case 3: squared sum of the items along a dimension of the scalar tensor.
For a 1-dimensional data array a, sum = \sum_i (a_i - shift)^2.
In this case, (4) -> scalar, dim = 0.
*/
bool TestReduceSumSquared3()
{
    /* a input tensor of size (4) */
    int sOrder = 1;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 4;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a output scalar tensor */
    int tOrder = 0;
    int * tDimSize = new int[MAX_TENSOR_DIM_NUM];
    int tUnitNum = 1;

    /* a shift tensor of size (1) */
    int shiftOrder = 0;
    int * shiftDimSize = new int[MAX_TENSOR_DIM_NUM];
    int shiftUnitNum = 1;

    DTYPE sData[4] = {0.0F, 1.0F, 2.0F, 3.0F};
    DTYPE shiftData[1] = {-1.0F};
    DTYPE answer[1] = {30.0F};

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * t = NewTensorV2(tOrder, tDimSize);
    XTensor * shift = NewTensorV2(shiftOrder, shiftDimSize);
    XTensor tUser;

    /* initialize variables */
    s->SetData(sData, sUnitNum);
    shift->SetData(shiftData, shiftUnitNum);
    t->SetZeroAll();

    /* call ReduceSumSquared function */
    _ReduceSumSquared(s, t, 0, shift);
    tUser = ReduceSumSquared(*s, 0, *shift);

    /* check results */
    cpuTest = _CheckData(t, answer, tUnitNum) && _CheckData(&tUser, answer, tUnitNum);

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensorV2(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
    XTensor * shiftGPU = NewTensorV2(shiftOrder, shiftDimSize, X_FLOAT, 1.0F, 0);
    XTensor tUserGPU;

    /* initialize variables */
    sGPU->SetData(sData, sUnitNum);
    shiftGPU->SetData(shiftData, shiftUnitNum);
    tGPU->SetZeroAll();

    /* call ReduceSumSquared function */
    _ReduceSumSquared(sGPU, tGPU, 0, shiftGPU);
    tUserGPU = ReduceSumSquared(*sGPU, 0, *shiftGPU);

    /* check results */
    gpuTest = _CheckData(tGPU, answer, tUnitNum) && _CheckData(&tUserGPU, answer, tUnitNum);

    /* destroy variables */
    delete s;
    delete t;
    delete shift;
    delete sGPU;
    delete tGPU;
    delete shiftGPU;
    delete[] sDimSize;
    delete[] tDimSize;
    delete[] shiftDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t;
    delete shift;
    delete[] sDimSize;
    delete[] tDimSize;
    delete[] shiftDimSize;

    return cpuTest;
#endif // USE_CUDA
}

341 342 343 344 345 346 347 348
/* other cases */
/*
TODO!!
*/

/* test for ReduceSumSquared Function */
bool TestReduceSumSquared()
{
liyinqiao committed
349
    XPRINT(0, stdout, "[TEST ReduceSumSquared] squared sum of the items along a dimension of the tensor\n");
350 351 352 353 354 355 356 357 358 359
    bool returnFlag = true, caseFlag = true;

    /* case 1 test */
    caseFlag = TestReduceSumSquared1();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");
liyinqiao committed
360 361 362 363 364
    
    /* case 2 test */
    caseFlag = TestReduceSumSquared2();
    if (!caseFlag) {
        returnFlag = false;
365
        XPRINT(0, stdout, ">> case 2 failed!\n");
liyinqiao committed
366 367
    }
    else
368 369 370 371 372 373 374 375 376 377
        XPRINT(0, stdout, ">> case 2 passed!\n");

    /* case 3 test */
    caseFlag = TestReduceSumSquared3();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 3 failed!\n");
    }
    else
    XPRINT(0, stdout, ">> case 3 passed!\n");
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

    /* other cases test */
    /*
    TODO!!
    */

    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
    }
    else
        XPRINT(0, stdout, ">> Failed!\n");

    XPRINT(0, stdout, "\n");

    return returnFlag;
    }

} // namespace nts(NiuTrans.Tensor)