TCopyIndexed.cpp 10.6 KB
Newer Older
liyinqiao committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-06-27
*/

#include "TCopyIndexed.h"

namespace nts { // namespace nts(NiuTrans.Tensor)
liyinqiao committed
25 26

/* 
27
case 1: copy indexed sub-tensors 
liyinqiao committed
28 29
In this case, (3, 2, 3) -> (3, 2, 2), dim = 2, indexSize = 2, 
srcIndex = [0, 2], tgtIndex = [0, 1], copyNum = 1.
liyinqiao committed
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
*/
bool TestCopyIndexed1()
{
    /* a input tensor of size (3, 2, 3) */
    int sOrder = 3;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 3;
    sDimSize[1] = 2;
    sDimSize[2] = 3;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a output tensor of size (3, 2, 2) */
    int tOrder = 3;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 3;
    tDimSize[1] = 2;
    tDimSize[2] = 2;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];

liyinqiao committed
55 56 57 58 59 60 61 62 63 64 65 66 67
    DTYPE sData[3][2][3] = { { {0.0F, -1.0F, 2.0F},
                               {2.0F, 1.0F, 3.0F} },
                             { {1.0F, 2.0F, 4.0F}, 
                               {3.0F, 1.0F, 2.0F}},
                             { {-1.0F, 3.0F, 2.0F}, 
                               {1.0F, -1.0F, 0.0F} } };

    DTYPE answer[3][2][2] = { { {0.0F, 2.0F},
                                {2.0F, 3.0F} },
                              { {1.0F, 4.0F}, 
                                {3.0F, 2.0F}},
                              { {-1.0F, 2.0F}, 
                                {1.0F, 0.0F} } };
liyinqiao committed
68 69 70 71 72 73 74 75 76 77 78 79
    int dim = 2;
    int indexSize = 2;
    int srcIndex[2] = {0, 2};
    int tgtIndex[2] = {0, 1};
    int copyNum = 1;

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s = NewTensor(sOrder, sDimSize);
    XTensor * t = NewTensor(tOrder, tDimSize);
80
    XTensor tUser;
liyinqiao committed
81 82 83 84 85 86

    /* initialize variables */
    s->SetData(sData, sUnitNum);
    t->SetZeroAll();

    /* call CopyIndexed function */
87 88
    _CopyIndexed(s, t, dim, srcIndex, indexSize, tgtIndex, copyNum);
    tUser = CopyIndexed(*s, dim, srcIndex, indexSize, tgtIndex, copyNum);
liyinqiao committed
89 90

    /* check results */
91
    cpuTest = t->CheckData(answer, tUnitNum) && tUser.CheckData(answer, tUnitNum);
92 93 94 95 96 97 98 99
    
#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
    XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensor(sOrder, tDimSize, X_FLOAT, 1.0F, 0);
100
    XTensor tUserGPU;
101 102 103 104 105 106

    /* initialize variables */
    sGPU->SetData(sData, sUnitNum);
    tGPU->SetZeroAll();

    /* call CopyIndexed function */
107 108
    _CopyIndexed(sGPU, tGPU, dim, srcIndex, indexSize, tgtIndex, copyNum);
    tUserGPU = CopyIndexed(*sGPU, dim, srcIndex, indexSize, tgtIndex, copyNum);
109 110

    /* check results */
111
    gpuTest = tGPU->CheckData(answer, tUnitNum) && tUserGPU.CheckData(answer, tUnitNum);
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

    /* destroy variables */
    delete s;
    delete t;
    delete sGPU;
    delete tGPU;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest;
#endif // USE_CUDA
}

/* 
case 2: copy indexed sub-tensors 
In this case, (3, 2, 3) -> (3, 2, 2), dim = 2, indexSize = 2, 
srcIndex = [0, 2], tgtIndex = [1, 0], copyNum = 1.
*/
bool TestCopyIndexed2()
{
    /* a input tensor of size (3, 2, 3) */
    int sOrder = 3;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 3;
    sDimSize[1] = 2;
    sDimSize[2] = 3;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a output tensor of size (3, 2, 2) */
    int tOrder = 3;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 3;
    tDimSize[1] = 2;
    tDimSize[2] = 2;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];

    DTYPE sData[3][2][3] = { { {0.0F, -1.0F, 2.0F},
                               {2.0F, 1.0F, 3.0F} },
                             { {1.0F, 2.0F, 4.0F}, 
                               {3.0F, 1.0F, 2.0F}},
                             { {-1.0F, 3.0F, 2.0F}, 
                               {1.0F, -1.0F, 0.0F} } };

    DTYPE answer[3][2][2] = { { {2.0F, 0.0F},
                                {3.0F, 2.0F} },
                              { {4.0F, 1.0F}, 
                                {2.0F, 3.0F}},
                              { {2.0F, -1.0F}, 
                                {0.0F, 1.0F} } };
    int dim = 2;
    int indexSize = 2;
    int srcIndex[2] = {0, 2};
    int tgtIndex[2] = {1, 0};
    int copyNum = 1;

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s = NewTensor(sOrder, sDimSize);
    XTensor * t = NewTensor(tOrder, tDimSize);
187
    XTensor tUser;
188 189 190 191 192 193

    /* initialize variables */
    s->SetData(sData, sUnitNum);
    t->SetZeroAll();

    /* call CopyIndexed function */
194 195
    _CopyIndexed(s, t, dim, srcIndex, indexSize, tgtIndex, copyNum);
    tUser = CopyIndexed(*s, dim, srcIndex, indexSize, tgtIndex, copyNum);
196 197
    
    /* check results */
198
    cpuTest = t->CheckData(answer, tUnitNum) && tUser.CheckData(answer, tUnitNum);
199 200 201 202 203 204 205 206
    
#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
    XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensor(sOrder, tDimSize, X_FLOAT, 1.0F, 0);
207
    XTensor tUserGPU;
208 209 210 211 212 213

    /* initialize variables */
    sGPU->SetData(sData, sUnitNum);
    tGPU->SetZeroAll();

    /* call CopyIndexed function */
214 215
    _CopyIndexed(sGPU, tGPU, dim, srcIndex, indexSize, tgtIndex, copyNum);
    tUserGPU = CopyIndexed(*sGPU, dim, srcIndex, indexSize, tgtIndex, copyNum);
216 217

    /* check results */
218
    gpuTest = tGPU->CheckData(answer, tUnitNum) && tUserGPU.CheckData(answer, tUnitNum);
219 220 221 222 223 224 225 226

    /* destroy variables */
    delete s;
    delete t;
    delete sGPU;
    delete tGPU;
    delete[] sDimSize;
    delete[] tDimSize;
liyinqiao committed
227

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest;
#endif // USE_CUDA
}

/* 
case 3: copy indexed sub-tensors 
In this case, (3, 2, 3) -> (3, 2, 2), dim = 2, indexSize = 1, 
srcIndex = [0], tgtIndex = [0], copyNum = 2.
*/
bool TestCopyIndexed3()
{
    /* a input tensor of size (3, 2, 3) */
    int sOrder = 3;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 3;
    sDimSize[1] = 2;
    sDimSize[2] = 3;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a output tensor of size (3, 2, 2) */
    int tOrder = 3;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 3;
    tDimSize[1] = 2;
    tDimSize[2] = 2;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];

    DTYPE sData[3][2][3] = { { {0.0F, -1.0F, 2.0F},
                               {2.0F, 1.0F, 3.0F} },
                             { {1.0F, 2.0F, 4.0F}, 
                               {3.0F, 1.0F, 2.0F}},
                             { {-1.0F, 3.0F, 2.0F}, 
                               {1.0F, -1.0F, 0.0F} } };

    DTYPE answer[3][2][2] = { { {0.0F, -1.0F},
                                {2.0F, 1.0F} },
                              { {1.0F, 2.0F}, 
                                {3.0F, 1.0F}},
                              { {-1.0F, 3.0F}, 
                                {1.0F, -1.0F} } };
    int dim = 2;
    int indexSize = 1;
    int srcIndex[1] = {0};
    int tgtIndex[1] = {0};
    int copyNum = 2;

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s = NewTensor(sOrder, sDimSize);
    XTensor * t = NewTensor(tOrder, tDimSize);
294
    XTensor tUser;
295 296 297 298 299 300

    /* initialize variables */
    s->SetData(sData, sUnitNum);
    t->SetZeroAll();

    /* call CopyIndexed function */
301 302
    _CopyIndexed(s, t, dim, srcIndex, indexSize, tgtIndex, copyNum);
    tUser = CopyIndexed(*s, dim, srcIndex, indexSize, tgtIndex, copyNum);
303 304
    
    /* check results */
305
    cpuTest = t->CheckData(answer, tUnitNum) && tUser.CheckData(answer, tUnitNum);
306
    
liyinqiao committed
307 308 309 310 311 312 313
#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
    XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensor(sOrder, tDimSize, X_FLOAT, 1.0F, 0);
314
    XTensor tUserGPU;
liyinqiao committed
315 316 317 318 319 320

    /* initialize variables */
    sGPU->SetData(sData, sUnitNum);
    tGPU->SetZeroAll();

    /* call CopyIndexed function */
321 322
    _CopyIndexed(sGPU, tGPU, dim, srcIndex, indexSize, tgtIndex, copyNum);
    tUserGPU = CopyIndexed(*sGPU, dim, srcIndex, indexSize, tgtIndex, copyNum);
liyinqiao committed
323 324

    /* check results */
325
    gpuTest = tGPU->CheckData(answer, tUnitNum) && tUserGPU.CheckData(answer, tUnitNum);
liyinqiao committed
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

    /* destroy variables */
    delete s;
    delete t;
    delete sGPU;
    delete tGPU;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest;
#endif // USE_CUDA
}

/* other cases */
/*
TODO!!
*/

/* test for CopyIndexed Function */
bool TestCopyIndexed()
{
    XPRINT(0, stdout, "[TEST CopyIndexed] copy indexed sub-tensors \n");
    bool returnFlag = true, caseFlag = true;

    /* case 1 test */
    caseFlag = TestCopyIndexed1();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    
    /* case 2 test */
    caseFlag = TestCopyIndexed2();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 2 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 2 passed!\n");
        
    /* case 3 test */
    caseFlag = TestCopyIndexed3();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 3 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 3 passed!\n");
liyinqiao committed
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

    /* other cases test */
    /*
    TODO!!
    */

    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
    }
    else
        XPRINT(0, stdout, ">> Failed!\n");

    XPRINT(0, stdout, "\n");

    return returnFlag;
    }

} // namespace nts(NiuTrans.Tensor)