TTopK.cpp 16.8 KB
Newer Older
1
/* NiuTrans.Tensor - an open-source tensor library
liyinqiao committed
2
* Copyright (C) 2017, Natural Language Processing Lab, Northeastern University.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-06-27
*/

#include "TTopK.h"

namespace nts { // namespace nts(NiuTrans.Tensor)
liyinqiao committed
25 26 27 28 29 30

/* 
case 1: get the top-k items along a given dimension.
In this case, 
(2, 4) -> (2, 4), dim = 0, k = 2
(2, 4) -> (2, 4), dim = 1, k = 4
liyinqiao committed
31
*/
32 33
bool TestTopK1()
{
liyinqiao committed
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    /* a input tensor of size (2, 4) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 2;
    sDimSize[1] = 4;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a output tensor of size (2, 4) */
    int tOrder = 2;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 2;
    tDimSize[1] = 4;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];

liyinqiao committed
54 55
    DTYPE sData[2][4] = { {5.0F, 1.0F, 2.0F, 8.0F},
                          {4.0F, 3.0F, 7.0F, 6.0F} };
liyinqiao committed
56

liyinqiao committed
57 58
    DTYPE tAnswer1[2][4] = { {5.0F, 3.0F, 7.0F, 8.0F},
                             {4.0F, 1.0F, 2.0F, 6.0F} };
liyinqiao committed
59 60 61
    int indexAnswer1[2][4] = { {0, 1, 1, 0},
                               {1, 0, 0, 1} };

liyinqiao committed
62 63
    DTYPE tAnswer2[2][4] = { {8.0F, 5.0F, 2.0F, 1.0F},
                             {7.0F, 6.0F, 4.0F, 3.0F} };
liyinqiao committed
64
    int indexAnswer2[2][4] = { {3, 0, 2, 1},
65 66 67 68 69 70
                               {2, 3, 0, 1} };

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
liyinqiao committed
71 72 73 74 75
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * t1 = NewTensorV2(tOrder, tDimSize);
    XTensor * t2 = NewTensorV2(tOrder, tDimSize);
    XTensor * index1 = NewTensorV2(tOrder, tDimSize, X_INT);
    XTensor * index2 = NewTensorV2(tOrder, tDimSize, X_INT);
76

77 78 79
    XTensor sUser = XTensor(sOrder, sDimSize, X_FLOAT, 1.0F, -1, NULL);
    XTensor tUser1 = XTensor(tOrder, tDimSize, X_FLOAT, 1.0F, -1, NULL);
    XTensor tUser2 = XTensor(tOrder, tDimSize, X_FLOAT, 1.0F, -1, NULL);
liyinqiao committed
80 81
    XTensor indexUser1 = NewTensorV2(tOrder, tDimSize, X_INT, 1.0F, -1, NULL);
    XTensor indexUser2 = NewTensorV2(tOrder, tDimSize, X_INT, 1.0F, -1, NULL);
82

83
    /* initialize variables */
liyinqiao committed
84 85 86 87 88
    s->SetData(sData, sUnitNum);
    t1->SetZeroAll();
    t2->SetZeroAll();
    index1->SetZeroAll();
    index2->SetZeroAll();
89

90 91 92 93 94 95
    sUser.SetData(sData, sUnitNum);
    tUser1.SetZeroAll();
    tUser2.SetZeroAll();
    indexUser1.SetZeroAll();
    indexUser2.SetZeroAll();

96 97
    /* call TopK function */
    int dim = 0;
liyinqiao committed
98
    int k = sDimSize[dim];
99
    _TopK(s, t1, index1, dim, k);
100
    TopK(sUser, tUser1, indexUser1, dim, k);
101 102

    dim = 1;
liyinqiao committed
103
    k = sDimSize[dim];
104
    _TopK(s, t2, index2, dim, k);
105
    TopK(sUser, tUser2, indexUser2, dim, k);
106 107

    /* check results */
liyinqiao committed
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        
    for (int i = 0; i < tDimSize[1]; ++i)
    {
        for (int j = 0; j < tDimSize[0]; ++j)
        {
            float tmpData = ((float *)t1->data)[i + tDimSize[1] * j];
            int tmpIndex = ((int *)index1->data)[i + tDimSize[1] * j];
            float tmpDataUser = ((float *)tUser1.data)[i + tDimSize[1] * j];
            int tmpIndexUser = ((int *)indexUser1.data)[i + tDimSize[1] * j];
            bool flag = false;
            bool flagUser = false;
            for (int k = 0; k < tDimSize[0]; ++k)
            {
                float* ans = tAnswer1[0];
                int* ansIndex = indexAnswer1[0];
                if (tmpData == ans[i + tDimSize[1] * k] && tmpIndex == ansIndex[i + tDimSize[1] * k])
                {
                    flag = true;
                }
                if (tmpDataUser == ans[i + tDimSize[1] * k] && tmpIndexUser == ansIndex[i + tDimSize[1] * k])
                {
                    flagUser = true;
                }
            }
            cpuTest = cpuTest&&flag&&flagUser;
        }
    }

    for (int i = 0; i < tDimSize[0]; ++i)
    {
        for (int j = 0; j < tDimSize[1]; ++j)
        {
            float tmpData = ((float *)t2->data)[i * tDimSize[1] + j];
            int tmpIndex = ((int *)index2->data)[i * tDimSize[1] + j];
            float tmpDataUser = ((float *)tUser2.data)[i * tDimSize[1] + j];
            int tmpIndexUser = ((int *)indexUser2.data)[i * tDimSize[1] + j];
            bool flag = false;
            bool flagUser = false;
            for (int k = 0; k < tDimSize[1]; ++k)
            {
                float* ans = tAnswer2[0];
                int* ansIndex = indexAnswer2[0];
                if (tmpData == ans[i * tDimSize[1] + k] && tmpIndex == ansIndex[i * tDimSize[1] + k])
                {
                    flag = true;
                }
                if (tmpDataUser == ans[i * tDimSize[1] + k] && tmpIndexUser == ansIndex[i * tDimSize[1] + k])
                {
                    flagUser = true;
                }
            }
            cpuTest = cpuTest&&flag&&flagUser;
        }
    }


164 165 166 167 168 169

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
liyinqiao committed
170 171 172 173 174
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU1 = NewTensorV2(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU2 = NewTensorV2(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
    XTensor * indexGPU1 = NewTensorV2(tOrder, tDimSize, X_INT, 1.0F, 0);
    XTensor * indexGPU2 = NewTensorV2(tOrder, tDimSize, X_INT, 1.0F, 0);
175
    
176 177 178
    XTensor sUserGPU = XTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0, NULL);
    XTensor tUserGPU1 = XTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0, NULL);
    XTensor tUserGPU2 = XTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0, NULL);
liyinqiao committed
179 180
    XTensor indexUserGPU1 = NewTensorV2(tOrder, tDimSize, X_INT, 1.0F, 0, NULL);
    XTensor indexUserGPU2 = NewTensorV2(tOrder, tDimSize, X_INT, 1.0F, 0, NULL);
181

182
    /* initialize variables */
liyinqiao committed
183 184 185 186 187
    sGPU->SetData(sData, sUnitNum);
    tGPU1->SetZeroAll();
    tGPU2->SetZeroAll();
    indexGPU1->SetZeroAll();
    indexGPU2->SetZeroAll();
188

189 190 191 192 193 194
    sUserGPU.SetData(sData, sUnitNum);
    tUserGPU1.SetZeroAll();
    tUserGPU2.SetZeroAll();
    indexUserGPU1.SetZeroAll();
    indexUserGPU2.SetZeroAll();

195 196
    /* call TopK function */
    dim = 0;
liyinqiao committed
197
    k = sDimSize[dim];
198
    _TopK(sGPU, tGPU1, indexGPU1, dim, k);
199
    TopK(sUserGPU, tUserGPU1, indexUserGPU1, dim, k);
200 201
    
    dim = 1;
liyinqiao committed
202
    k = sDimSize[dim];
203
    _TopK(sGPU, tGPU2, indexGPU2, dim, k);
204
    TopK(sUserGPU, tUserGPU2, indexUserGPU2, dim, k);
205 206
    
    /* check results */
liyinqiao committed
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    float* checkData = new float[tUnitNum];
    int* checkIndex = new int[tUnitNum];
    float* checkDataUser = new float[tUnitNum];
    int* checkIndexUser = new int[tUnitNum];

    cudaMemcpy(checkData, tGPU1->data, sizeof(DTYPE)*tUnitNum,cudaMemcpyDeviceToHost);
    cudaMemcpy(checkIndex, indexGPU1->data, sizeof(int)*tUnitNum, cudaMemcpyDeviceToHost);
    cudaMemcpy(checkDataUser, tUserGPU1.data, sizeof(DTYPE)*tUnitNum, cudaMemcpyDeviceToHost);
    cudaMemcpy(checkIndexUser, indexUserGPU1.data, sizeof(int)*tUnitNum, cudaMemcpyDeviceToHost);

    for (int i = 0; i < tDimSize[1]; ++i)
    {
        for (int j = 0; j < tDimSize[0]; ++j)
        {
            float tmpData = ((float *)checkData)[i + tDimSize[1] * j];
            int tmpIndex = ((int *)checkIndex)[i + tDimSize[1] * j];
            float tmpDataUser = ((float *)checkDataUser)[i + tDimSize[1] * j];
            int tmpIndexUser = ((int *)checkIndexUser)[i + tDimSize[1] * j];
            bool flag = false;
            bool flagUser = false;
            for (int k = 0; k < tDimSize[0]; ++k)
            {
                float* ans = tAnswer1[0];
                int* ansIndex = indexAnswer1[0];
                if (tmpData == ans[i + tDimSize[1] * k] && tmpIndex == ansIndex[i + tDimSize[1] * k])
                {
                    flag = true;
                }
                if (tmpDataUser == ans[i + tDimSize[1] * k] && tmpIndexUser == ansIndex[i + tDimSize[1] * k])
                {
                    flagUser = true;
                }
            }
            gpuTest = gpuTest&&flag&&flagUser;
        }
    }

    cudaMemcpy(checkData, tGPU2->data, sizeof(DTYPE)*tUnitNum, cudaMemcpyDeviceToHost);
    cudaMemcpy(checkIndex, indexGPU2->data, sizeof(int)*tUnitNum, cudaMemcpyDeviceToHost);
    cudaMemcpy(checkDataUser, tUserGPU2.data, sizeof(DTYPE)*tUnitNum, cudaMemcpyDeviceToHost);
    cudaMemcpy(checkIndexUser, indexUserGPU2.data, sizeof(int)*tUnitNum, cudaMemcpyDeviceToHost);

    for (int i = 0; i < tDimSize[0]; ++i)
    {
        for (int j = 0; j < tDimSize[1]; ++j)
        {
            float tmpData = ((float *)checkData)[i * tDimSize[1] + j];
            int tmpIndex = ((int *)checkIndex)[i * tDimSize[1] + j];
            float tmpDataUser = ((float *)checkDataUser)[i * tDimSize[1] + j];
            int tmpIndexUser = ((int *)checkIndexUser)[i * tDimSize[1] + j];
            bool flag = false;
            bool flagUser = false;
            for (int k = 0; k < tDimSize[1]; ++k)
            {
                float* ans = tAnswer2[0];
                int* ansIndex = indexAnswer2[0];
                if (tmpData == ans[i * tDimSize[1] + k] && tmpIndex == ansIndex[i * tDimSize[1] + k])
                {
                    flag = true;
                }
                if (tmpDataUser == ans[i * tDimSize[1] + k] && tmpIndexUser == ansIndex[i * tDimSize[1] + k])
                {
                    flagUser = true;
                }
            }
            gpuTest = gpuTest&&flag&&flagUser;
        }
    }
275 276

    /* destroy variables */
liyinqiao committed
277 278 279 280 281 282 283 284 285 286 287 288
    delete s;
    delete t1;
    delete t2;
    delete index1;
    delete index2;
    delete sGPU;
    delete tGPU1;
    delete tGPU2;
    delete indexGPU1;
    delete indexGPU2;
    delete[] sDimSize;
    delete[] tDimSize;
liyinqiao committed
289 290 291 292
    delete[] checkData;
    delete[] checkIndex;
    delete[] checkDataUser;
    delete[] checkIndexUser;
293 294 295 296

    return cpuTest && gpuTest;
#else
    /* destroy variables */
liyinqiao committed
297 298 299 300 301 302 303 304 305 306 307 308
    delete s;
    delete t1;
    delete t2;
    delete index1;
    delete index2;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest;
#endif // USE_CUDA
}

liyinqiao committed
309 310 311
/*
case 2: get the top-k items along a given dimension.
In this case, (2, 4) -> (2, 2), dim = 1, k = 2.
liyinqiao committed
312 313 314 315 316 317 318 319
*/
bool TestTopK2()
{
    /* a input tensor of size (2, 4) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 2;
    sDimSize[1] = 4;
320

liyinqiao committed
321 322 323 324 325 326 327 328 329 330 331 332 333 334
    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a output tensor of size (2, 2) */
    int tOrder = 2;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 2;
    tDimSize[1] = 2;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];

liyinqiao committed
335 336 337 338
    DTYPE sData[2][4] = { {5.0F, 1.0F, 2.0F, 8.0F},
                          {4.0F, 3.0F, 7.0F, 6.0F} };
    DTYPE tAnswer[2][2] = { {8.0F, 5.0F},
                            {7.0F, 6.0F} };
liyinqiao committed
339 340 341 342 343 344 345
    int indexAnswer[2][2] = { {3, 0},
                              {2, 3} };

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
liyinqiao committed
346 347 348
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * t = NewTensorV2(tOrder, tDimSize);
    XTensor * index = NewTensorV2(tOrder, tDimSize, X_INT);
349 350 351
    
    XTensor sUser = XTensor(sOrder, sDimSize, X_FLOAT, 1.0F, -1, NULL);
    XTensor tUser = XTensor(tOrder, tDimSize, X_FLOAT, 1.0F, -1, NULL);
liyinqiao committed
352
    XTensor indexUser = NewTensorV2(tOrder, tDimSize, X_INT, 1.0F, -1, NULL);
liyinqiao committed
353 354 355 356 357 358

    /* initialize variables */
    s->SetData(sData, sUnitNum);
    t->SetZeroAll();
    index->SetZeroAll();

359 360 361 362
    sUser.SetData(sData, sUnitNum);
    tUser.SetZeroAll();
    indexUser.SetZeroAll();

liyinqiao committed
363 364 365
    /* call TopK function */
    int dim = 1;
    int k = tDimSize[dim];
366
    _TopK(s, t, index, dim, k);
367
    TopK(sUser, tUser, indexUser, dim, k);
liyinqiao committed
368 369

    /* check results */
liyinqiao committed
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396

    for (int i = 0; i < tDimSize[0]; ++i)
    {
        for (int j = 0; j < tDimSize[1]; ++j)
        {
            float tmpData = ((float *)t->data)[i * tDimSize[1] + j];
            int tmpIndex = ((int *)index->data)[i * tDimSize[1] + j];
            float tmpDataUser = ((float *)tUser.data)[i * tDimSize[1] + j];
            int tmpIndexUser = ((int *)indexUser.data)[i * tDimSize[1] + j];
            bool flag = false;
            bool flagUser = false;
            for (int k = 0; k < tDimSize[1]; ++k)
            {
                float* ans = tAnswer[0];
                int* ansIndex = indexAnswer[0];
                if (tmpData == ans[i * tDimSize[1] + k] && tmpIndex == ansIndex[i * tDimSize[1] + k])
                {
                    flag = true;
                }
                if (tmpDataUser == ans[i * tDimSize[1] + k] && tmpIndexUser == ansIndex[i * tDimSize[1] + k])
                {
                    flagUser = true;
                }
            }
            cpuTest = cpuTest&&flag&&flagUser;
        }
    }
liyinqiao committed
397 398 399 400 401 402

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
liyinqiao committed
403 404 405
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensorV2(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
    XTensor * indexGPU = NewTensorV2(tOrder, tDimSize, X_INT, 1.0F, 0);
liyinqiao committed
406
    
407 408
    XTensor sUserGPU = XTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0, NULL);
    XTensor tUserGPU = XTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0, NULL);
liyinqiao committed
409
    XTensor indexUserGPU = NewTensorV2(tOrder, tDimSize, X_INT, 1.0F, 0, NULL);
410

liyinqiao committed
411 412 413 414 415
    /* initialize variables */
    sGPU->SetData(sData, sUnitNum);
    tGPU->SetZeroAll();
    indexGPU->SetZeroAll();

416 417 418 419
    sUserGPU.SetData(sData, sUnitNum);
    tUserGPU.SetZeroAll();
    indexUserGPU.SetZeroAll();

liyinqiao committed
420 421 422
    /* call TopK function */
    dim = 1;
    k = tDimSize[dim];
423
    _TopK(sGPU, tGPU, indexGPU, dim, k);
424
    TopK(sUserGPU, tUserGPU, indexUserGPU, dim, k);
liyinqiao committed
425 426

    /* check results */
liyinqiao committed
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
    float* checkData = new float[tUnitNum];
    int* checkIndex = new int[tUnitNum];
    float* checkDataUser = new float[tUnitNum];
    int* checkIndexUser = new int[tUnitNum];

    cudaMemcpy(checkData, tGPU->data, sizeof(DTYPE)*tUnitNum, cudaMemcpyDeviceToHost);
    cudaMemcpy(checkIndex, indexGPU->data, sizeof(int)*tUnitNum, cudaMemcpyDeviceToHost);
    cudaMemcpy(checkDataUser, tUserGPU.data, sizeof(DTYPE)*tUnitNum, cudaMemcpyDeviceToHost);
    cudaMemcpy(checkIndexUser, indexUserGPU.data, sizeof(int)*tUnitNum, cudaMemcpyDeviceToHost);

    for (int i = 0; i < tDimSize[0]; ++i)
    {
        for (int j = 0; j < tDimSize[1]; ++j)
        {
            float tmpData = ((float *)checkData)[i * tDimSize[1] + j];
            int tmpIndex = ((int *)checkIndex)[i * tDimSize[1] + j];
            float tmpDataUser = ((float *)checkDataUser)[i * tDimSize[1] + j];
            int tmpIndexUser = ((int *)checkIndexUser)[i * tDimSize[1] + j];
            bool flag = false;
            bool flagUser = false;
            for (int k = 0; k < tDimSize[1]; ++k)
            {
                float* ans = tAnswer[0];
                int* ansIndex = indexAnswer[0];
                if (tmpData == ans[i * tDimSize[1] + k] && tmpIndex == ansIndex[i * tDimSize[1] + k])
                {
                    flag = true;
                }
                if (tmpDataUser == ans[i * tDimSize[1] + k] && tmpIndexUser == ansIndex[i * tDimSize[1] + k])
                {
                    flagUser = true;
                }
            }
            gpuTest = gpuTest&&flag&&flagUser;
        }
    }
463

liyinqiao committed
464 465 466 467 468 469 470 471 472
    /* destroy variables */
    delete s;
    delete t;
    delete index;
    delete sGPU;
    delete tGPU;
    delete indexGPU;
    delete[] sDimSize;
    delete[] tDimSize;
liyinqiao committed
473 474 475 476
    delete[] checkData;
    delete[] checkIndex;
    delete[] checkDataUser;
    delete[] checkIndexUser;
liyinqiao committed
477 478 479 480 481 482 483 484 485

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t;
    delete index;
    delete[] sDimSize;
    delete[] tDimSize;
486 487 488 489 490 491 492 493 494 495 496 497 498

    return cpuTest;
#endif // USE_CUDA
}

/* other cases */
/*
TODO!!
*/

/* test for TopK Function */
bool TestTopK()
{
liyinqiao committed
499
    XPRINT(0, stdout, "[TEST TopK] get the top-k items along a given dimension\n");
500
    bool returnFlag = true, caseFlag = true;
liyinqiao committed
501
    
502 503 504 505 506 507 508 509
    /* case 1 test */
    caseFlag = TestTopK1();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");
liyinqiao committed
510 511 512 513 514 515 516 517 518
    
    /* case 2 test */
    caseFlag = TestTopK2();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 2 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 2 passed!\n");
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536

    /* other cases test */
    /*
    TODO!!
    */

    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
    }
    else
        XPRINT(0, stdout, ">> Failed!\n");

    XPRINT(0, stdout, "\n");

    return returnFlag;
    }

} // namespace nts(NiuTrans.Tensor)