TMatrixMulBatched.cpp 8.17 KB
Newer Older
liyinqiao committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-06-15
*/

22
#include "../XTensor.h"
xiaotong committed
23
#include "TMatrixMulBatched.h"
liyinqiao committed
24 25

namespace nts { // namespace nts(NiuTrans.Tensor)
liyinqiao committed
26 27 28 29

/* 
case 1: matrix multiplication of the two tensors. 
In this case, a=(2, 3), b=(2, 3) -> c=(2, 2), transposedA=X_NOTRANS, transposedB=X_NOTRANS.
liyinqiao committed
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
*/
bool TestMatrixMulBatched1()
{
    /* a source tensor of size (2, 3) */
    int sOrder1 = 2;
    int * sDimSize1 = new int[sOrder1];
    sDimSize1[0] = 2;
    sDimSize1[1] = 3;

    int sUnitNum1 = 1;
    for (int i = 0; i < sOrder1; i++)
        sUnitNum1 *= sDimSize1[i];

    /* a source tensor of size (3, 2) */
    int sOrder2 = 2;
    int * sDimSize2 = new int[sOrder2];
    sDimSize2[0] = 3;
    sDimSize2[1] = 2;

    int sUnitNum2 = 1;
    for (int i = 0; i < sOrder2; i++)
        sUnitNum2 *= sDimSize2[i];

    /* a target tensor of size (2, 2) */
    int tOrder = 2;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 2;
    tDimSize[1] = 2;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];

liyinqiao committed
63 64 65 66 67 68 69
    DTYPE sData1[2][3] = { {1.0F, 2.0F, 3.0F},
                           {-4.0F, 5.0F, 6.0F} };
    DTYPE sData2[3][2] = { {0.0F, -1.0F},
                           {1.0F, 2.0F}, 
                           {2.0F, 1.0F} };
    DTYPE answer[2][2] = { {8.0F, 6.0F}, 
                           {17.0F, 20.0F} };
liyinqiao committed
70 71 72 73 74 75 76 77

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s1 = NewTensor(sOrder1, sDimSize1);
    XTensor * s2 = NewTensor(sOrder2, sDimSize2);
    XTensor * t = NewTensor(tOrder, tDimSize);
78
    XTensor tUser;
liyinqiao committed
79 80 81 82 83 84 85

    /* initialize variables */
    s1->SetData(sData1, sUnitNum1);
    s2->SetData(sData2, sUnitNum2);
    t->SetZeroAll();

    /* call MatrixMulBatched function */
86
    _MatrixMulBatched(s1, X_NOTRANS, s2, X_NOTRANS, t);
87
    tUser = MatrixMulBatched(*s1, X_NOTRANS, *s2, X_NOTRANS);
liyinqiao committed
88 89
    
    /* check results */
90
    cpuTest = t->CheckData(answer, tUnitNum) && tUser.CheckData(answer, tUnitNum);
liyinqiao committed
91 92 93 94 95 96 97 98 99
    
#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensor */
    XTensor * sGPU1 = NewTensor(sOrder1, sDimSize1, X_FLOAT, 1.0F, 0);
    XTensor * sGPU2 = NewTensor(sOrder2, sDimSize2, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
100
    XTensor tUserGPU;
liyinqiao committed
101 102 103 104 105 106 107

    /* Initialize variables */
    sGPU1->SetData(sData1, sUnitNum1);
    sGPU2->SetData(sData2, sUnitNum2);
    tGPU->SetZeroAll();
    
    /* call MatrixMulBatched function */
108
    _MatrixMulBatched(sGPU1, X_NOTRANS, sGPU2, X_NOTRANS, tGPU);
109
    tUserGPU = MatrixMulBatched(*sGPU1, X_NOTRANS, *sGPU2, X_NOTRANS);
liyinqiao committed
110 111
    
    /* check results */
112
    gpuTest = tGPU->CheckData(answer, tUnitNum) && tUserGPU.CheckData(answer, tUnitNum);
113
    
liyinqiao committed
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    /* destroy variables */
    delete s1;
    delete s2;
    delete t;
    delete sGPU1;
    delete sGPU2;
    delete tGPU;
    delete[] sDimSize1;
    delete[] sDimSize2;
    delete[] tDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s1;
    delete s2;
    delete t;
    delete[] sDimSize1;
    delete[] sDimSize2;
    delete[] tDimSize;

    return cpuTest;
#endif // USE_CUDA
}

liyinqiao committed
139 140 141
/*
case 2: matrix multiplication of the two tensors. 
In this case, a=(2, 2, 3), b=(2, 3, 2) -> c=(2, 2, 2), transposedA=X_NOTRANS, transposedB=X_NOTRANS.
liyinqiao committed
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
*/
bool TestMatrixMulBatched2()
{
    /* a source tensor of size (2, 2, 3) */
    int sOrder1 = 3;
    int * sDimSize1 = new int[sOrder1];
    sDimSize1[0] = 2;
    sDimSize1[1] = 2;
    sDimSize1[2] = 3;

    int sUnitNum1 = 1;
    for (int i = 0; i < sOrder1; i++)
        sUnitNum1 *= sDimSize1[i];

    /* a source tensor of size (2, 3, 2) */
    int sOrder2 = 3;
    int * sDimSize2 = new int[sOrder2];
    sDimSize2[0] = 2;
    sDimSize2[1] = 3;
    sDimSize2[2] = 2;

    int sUnitNum2 = 1;
    for (int i = 0; i < sOrder2; i++)
        sUnitNum2 *= sDimSize2[i];

    /* a target tensor of size (2, 2, 2) */
    int tOrder = 3;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 2;
    tDimSize[1] = 2;
    tDimSize[2] = 2;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];

liyinqiao committed
178 179 180 181 182 183 184 185 186 187 188 189 190 191
    DTYPE sData1[2][2][3] = { { {0.0F, -1.0F, 2.0F},
                                {2.0F, 1.0F, 3.0F} },
                              { {1.0F, 2.0F, 4.0F}, 
                                {3.0F, 1.0F, 2.0F} } };
    DTYPE sData2[2][3][2] = { { {1.0F, 2.0F},
                                {-4.0F, 3.0F},
                                {2.0F, 6.0F} },
                              { {1.0F, 2.0F},
                                {3.0F, 4.0F},
                                {5.0F, 6.0F} } };
    DTYPE answer[2][2][2] = { { {8.0F, 9.0F}, 
                                {4.0F, 25.0F} },
                              { {27.0F, 34.0F}, 
                                {16.0F, 22.0F} } };
liyinqiao committed
192 193 194 195 196 197 198 199

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s1 = NewTensor(sOrder1, sDimSize1);
    XTensor * s2 = NewTensor(sOrder2, sDimSize2);
    XTensor * t = NewTensor(tOrder, tDimSize);
200
    XTensor tUser;
liyinqiao committed
201 202 203 204 205 206 207

    /* initialize variables */
    s1->SetData(sData1, sUnitNum1);
    s2->SetData(sData2, sUnitNum2);
    t->SetZeroAll();

    /* call MatrixMulBatched function */
208
    _MatrixMulBatched(s1, X_NOTRANS, s2, X_NOTRANS, t);
209
    tUser = MatrixMulBatched(*s1, X_NOTRANS, *s2, X_NOTRANS);
liyinqiao committed
210 211

    /* check results */
212 213
    cpuTest = t->CheckData(answer, tUnitNum) && tUser.CheckData(answer, tUnitNum);

liyinqiao committed
214 215 216 217 218 219 220 221
#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensor */
    XTensor * sGPU1 = NewTensor(sOrder1, sDimSize1, X_FLOAT, 1.0F, 0);
    XTensor * sGPU2 = NewTensor(sOrder2, sDimSize2, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
222
    XTensor tUserGPU;
liyinqiao committed
223 224 225 226 227 228 229

    /* Initialize variables */
    sGPU1->SetData(sData1, sUnitNum1);
    sGPU2->SetData(sData2, sUnitNum2);
    tGPU->SetZeroAll();

    /* call MatrixMulBatched function */
230
    _MatrixMulBatched(sGPU1, X_NOTRANS, sGPU2, X_NOTRANS, tGPU);
231
    tUserGPU = MatrixMulBatched(*sGPU1, X_NOTRANS, *sGPU2, X_NOTRANS);
liyinqiao committed
232 233

    /* check results */
234
    gpuTest = tGPU->CheckData(answer, tUnitNum) && tUserGPU.CheckData(answer, tUnitNum);
liyinqiao committed
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

    /* destroy variables */
    delete s1;
    delete s2;
    delete t;
    delete sGPU1;
    delete sGPU2;
    delete tGPU;
    delete[] sDimSize1;
    delete[] sDimSize2;
    delete[] tDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s1;
    delete s2;
    delete t;
    delete[] sDimSize1;
    delete[] sDimSize2;
    delete[] tDimSize;

    return cpuTest;
#endif // USE_CUDA
}

/* other cases */
/*
    TODO!!
*/

/* test for TestMatrixMulBatched Function */
bool TestMatrixMulBatched()
{
    XPRINT(0, stdout, "[TEST MATRIXMULBATCHED] matrix multiplication of the two tensors \n");
    bool returnFlag = true, caseFlag = true;

    /* case 1 test */
    caseFlag = TestMatrixMulBatched1();

    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");

    /* case 2 test */
    caseFlag = TestMatrixMulBatched2();

    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 2 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 2 passed!\n");

    /* other cases test */
    /*
    TODO!!
    */

    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
    }
    else
        XPRINT(0, stdout, ">> Failed!\n");

    XPRINT(0, stdout, "\n");

    return returnFlag;
}

} // namespace nts(NiuTrans.Tensor)