TUnsqueeze.cpp 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-06-13
*/

#include "../XList.h"
liyinqiao committed
23
#include "TUnsqueeze.h"
24 25

namespace nts { // namespace nts(NiuTrans.Tensor)
liyinqiao committed
26 27 28 29 30 31

/* 
case 1: insert a dimension by copying the blocks for x times (where x is the size of the inerted dimension)
In this case, 
(2, 3) -> (2, 2, 3), dim=1, dSize=2
(2, 3) -> (2, 3, 2), dim=2, dSize=2
32 33 34 35 36 37 38 39 40 41 42 43 44
*/
bool TestUnsqueeze1()
{
    /* a source tensor of size (2, 3) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 2;
    sDimSize[1] = 3;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

liyinqiao committed
45 46 47 48 49 50
    /* a target tensor of size (2, 2, 3) */
    int tOrder1 = 3;
    int * tDimSize1 = new int[tOrder1];
    tDimSize1[0] = 2;
    tDimSize1[1] = 2;
    tDimSize1[2] = 3;
51

liyinqiao committed
52 53 54 55 56 57 58 59 60 61 62 63 64 65
    int tUnitNum1 = 1;
    for (int i = 0; i < tOrder1; i++)
        tUnitNum1 *= tDimSize1[i];

    /* a target tensor of size (2, 3, 2) */
    int tOrder2 = 3;
    int * tDimSize2 = new int[tOrder2];
    tDimSize2[0] = 2;
    tDimSize2[1] = 3;
    tDimSize2[2] = 2;

    int tUnitNum2 = 1;
    for (int i = 0; i < tOrder2; i++)
        tUnitNum2 *= tDimSize2[i];
66

liyinqiao committed
67 68 69 70 71 72 73 74 75 76 77 78
    DTYPE sData[2][3] = { {0.0F, 1.0F, 2.0F},
                          {3.0F, 4.0F, 5.0F} };
    DTYPE answer1[2][2][3] = { { {0.0F, 1.0F, 2.0F},
                                 {0.0F, 1.0F, 2.0F} },
                               { {3.0F, 4.0F, 5.0F},
                                 {3.0F, 4.0F, 5.0F} } };
    DTYPE answer2[2][3][2] = { { {0.0F, 0.0F}, 
                                 {1.0F, 1.0F}, 
                                 {2.0F, 2.0F} },
                               { {3.0F, 3.0F}, 
                                 {4.0F, 4.0F}, 
                                 {5.0F, 5.0F} } };
79 80 81 82 83 84
    
    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s = NewTensor(sOrder, sDimSize);
liyinqiao committed
85 86
    XTensor * t1 = NewTensor(tOrder1, tDimSize1);
    XTensor * t2 = NewTensor(tOrder2, tDimSize2);
87 88
    XTensor tUser1;
    XTensor tUser2;
89 90 91

    /* initialize variables */
    s->SetData(sData, sUnitNum);
liyinqiao committed
92 93
    t1->SetZeroAll();
    t2->SetZeroAll();
94 95

    /* call Unsqueeze function */
96 97
    _Unsqueeze(s, t1, 1, 2);
    _Unsqueeze(s, t2, 2, 2);
98 99
    tUser1 = Unsqueeze(*s, 1, 2);
    tUser2 = Unsqueeze(*s, 2, 2);
100 101

    /* check results */
102 103
    cpuTest = t1->CheckData(answer1, tUnitNum1) && tUser1.CheckData(answer1, tUnitNum1) && 
              t2->CheckData(answer2, tUnitNum2) && tUser2.CheckData(answer2, tUnitNum2);
104 105 106 107 108 109 110

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensor */
    XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
liyinqiao committed
111 112
    XTensor * tGPU1 = NewTensor(tOrder1, tDimSize1, X_FLOAT, 1.0F, 0);
    XTensor * tGPU2 = NewTensor(tOrder2, tDimSize2, X_FLOAT, 1.0F, 0);
113 114
    XTensor tUserGPU1;
    XTensor tUserGPU2;
115 116 117

    /* Initialize variables */
    sGPU->SetData(sData, sUnitNum);
liyinqiao committed
118 119
    tGPU1->SetZeroAll();
    tGPU2->SetZeroAll();
120 121

    /* call Unsqueeze function */
122 123
    _Unsqueeze(sGPU, tGPU1, 1, 2);
    _Unsqueeze(sGPU, tGPU2, 2, 2);
124 125
    tUserGPU1 = Unsqueeze(*sGPU, 1, 2);
    tUserGPU2 = Unsqueeze(*sGPU, 2, 2);
126 127

    /* check results */
128 129
    gpuTest = tGPU1->CheckData(answer1, tUnitNum1) && tUserGPU1.CheckData(answer1, tUnitNum1)
        && tGPU2->CheckData(answer2, tUnitNum2) && tUserGPU2.CheckData(answer2, tUnitNum2);
130 131

    /* destroy variables */
liyinqiao committed
132 133 134 135 136 137 138 139 140
    delete s;
    delete t1;
    delete t2;
    delete sGPU;
    delete tGPU1;
    delete tGPU2;
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;
141 142 143 144

    return cpuTest && gpuTest;
#else
    /* destroy variables */
liyinqiao committed
145 146 147 148 149 150
    delete s;
    delete t1;
    delete t2;
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;
151 152 153 154 155 156 157 158 159 160 161 162 163

    return cpuTest;
#endif // USE_CUDA
}

/* other cases */
/*
    TODO!!
*/

/* test for Unsqueeze Function */
bool TestUnsqueeze()
{
liyinqiao committed
164
    XPRINT(0, stdout, "[TEST Unsqueeze] insert a dimension by copying the blocks for x times\n");
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    bool returnFlag = true, caseFlag = true;

    /* case 1 test */
    caseFlag = TestUnsqueeze1();

    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");

    /* other cases test */
    /*
    TODO!!
    */

    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
    }
    else
        XPRINT(0, stdout, ">> Failed!\n");

    XPRINT(0, stdout, "\n");

    return returnFlag;
}

} // namespace nts(NiuTrans.Tensor)