TSelect.cpp 4.05 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
liyinqiao committed
19
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-07-04
20 21 22 23 24
*/

#include "TSelect.h"

namespace nts { // namespace nts(NiuTrans.Tensor)
liyinqiao committed
25 26 27 28 29

/* 
case 1: test SelectRange function.
It can generate a tensor with seleccted data in range[low,high] along the given dimension.
In this case, (2, 2, 4) -> (2, 2, 2), dim = 2, low = 1, high = 3.
30 31 32
*/
bool TestSelect1()
{
liyinqiao committed
33
    /* a input tensor of size (2, 2, 4) */
34 35 36 37 38 39 40 41 42 43
    int sOrder = 3;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 2;
    sDimSize[1] = 2;
    sDimSize[2] = 4;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

liyinqiao committed
44
    /* a output tensor of size (2, 2, 2) */
45 46 47
    int tOrder = 3;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 2;
liyinqiao committed
48 49
    tDimSize[1] = 2;
    tDimSize[2] = 2;
50 51 52 53 54

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];

liyinqiao committed
55 56 57 58 59 60 61 62
    DTYPE sData[2][2][4] = { { {0.0F, 1.0F, 2.0F, 3.0F},
                               {4.0F, 5.0F, 6.0F, 7.0F} },
                             { {1.0F, 2.0F, 3.0F, 4.0F},
                               {5.0F, 6.0F, 7.0F, 8.0F} } };
    DTYPE answer[2][2][2] = { { {1.0F, 2.0F},
                                {5.0F, 6.0F} },
                              { {2.0F, 3.0F},
                                {6.0F, 7.0F} } };
63 64 65 66 67 68 69

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s = NewTensor(sOrder, sDimSize);
    XTensor * t = NewTensor(tOrder, tDimSize);
70
    XTensor tUser;
71 72 73 74 75 76

    /* initialize variables */
    s->SetData(sData, sUnitNum);
    t->SetZeroAll();

    /* call SelectRange function */
77 78
    _SelectRange(s, t, 2, 1, 3);
    tUser = SelectRange(*s, 2, 1, 3);
79 80

    /* check results */
81
    cpuTest = t->CheckData(answer, tUnitNum) && tUser.CheckData(answer, tUnitNum);
liyinqiao committed
82
    
83 84 85 86 87 88
#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
    XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
liyinqiao committed
89
    XTensor * tGPU = NewTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
90
    XTensor tUserGPU;
91 92 93 94 95

    /* initialize variables */
    sGPU->SetData(sData, sUnitNum);
    tGPU->SetZeroAll();

96 97 98
    /* call SelectRange function */
    _SelectRange(sGPU, tGPU, 2, 1, 3);
    tUserGPU = SelectRange(*sGPU, 2, 1, 3);
99 100

    /* check results */
101
    gpuTest = tGPU->CheckData(answer, tUnitNum) && tUserGPU.CheckData(answer, tUnitNum);
liyinqiao committed
102
    
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    /* destroy variables */
    delete s;
    delete t;
    delete sGPU;
    delete tGPU;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest;
#endif // USE_CUDA
}

/* other cases */
/*
TODO!!
*/

/* test for Select Function */
bool TestSelect()
{
liyinqiao committed
131
    XPRINT(0, stdout, "[TEST Select] generate a tensor with seleccted data in range[low,high] along the given dimension \n");
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    bool returnFlag = true, caseFlag = true;

    /* case 1 test */
    caseFlag = TestSelect1();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");

    /* other cases test */
    /*
    TODO!!
    */

    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
    }
    else
        XPRINT(0, stdout, ">> Failed!\n");

    XPRINT(0, stdout, "\n");

    return returnFlag;
    }

} // namespace nts(NiuTrans.Tensor)