Sum.cu 4.65 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24
*/

#include "../../XDevice.h"
xiaotong committed
23
#include "../../XUtility.h"
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include "Sum.cuh"

namespace nts { // namespace nts(NiuTrans.Tensor)

#ifdef USE_CUDA

/*
summation of data arrays (CUDA Kernel)
c = a  + b * \beta
>> a - A matrix
>> b - another matrix
>> c - where we put a+b
>> size - the size of a/b/c
>> beta - the coefficient
*/
39
__global__
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
void KernelADD(DTYPE * a, DTYPE * b, DTYPE * c, int size, DTYPE beta)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;

    if (i < size)
        c[i] = a[i] + b[i] * beta;
}

/*
tensor summation c = a + b * \beta (cuda version)
>> a - a tensor
>> b - another tensor
>> c - where we put a+b*\beta. we save it in a if c is NULL
>> beta - the scaling factor
*/
void _CudaSum(const XTensor * a, const XTensor * b, XTensor * c, DTYPE beta)
{
    CheckNTErrors(a && b && c, "Empty tensor input!");
    CheckNTErrors((a->unitNum == b->unitNum && a->unitNum == c->unitNum),
                  "Unmatched tensors in addition!");
    CheckNTErrors((a->dataType == b->dataType && a->dataType == c->dataType),
                  "Unmatched tensors in addition!");
    CheckNTErrors((a->devID == b->devID && a->devID == c->devID),
                  "The tensors must be on the same!");

    int devIDBackup = XDevice::GetGPUDevice();
    XDevice::SetGPUDevice(a->devID);

    if (!a->isSparse && !b->isSparse) {
        CheckNTErrors(!c->isSparse,
            "Illegal use of sparse matrix in addition!");

        if (a->dataType == DEFAULT_DTYPE &&
            b->dataType == DEFAULT_DTYPE &&
            c->dataType == DEFAULT_DTYPE)
        {
            cublasHandle_t * handle = NULL;
            if ((a->mem != NULL) && (b->mem != NULL)) {
                cublasHandle_t * handleA = a->mem->GetCublasHandle();
                cublasHandle_t * handleB = b->mem->GetCublasHandle();
                handle = *handleA != 0 ? handleA : handleB;
            }
            else {
                handle = GDevs.GetCudaHandle(a->devID);
            }

            if ((c == a && handle != NULL) && *handle != 0) {
#ifdef DOUBELPRICSION
                cublasDaxpy(*handle, a->unitNum, &beta, (DTYPE*)b->data, 1, (DTYPE*)a->data, 1);
#else
                cublasSaxpy(*handle, a->unitNum, &beta, (DTYPE*)b->data, 1, (DTYPE*)a->data, 1);
#endif
            }
            else {
                int gridSize[3], blockSize[3];

                GDevs.GetCudaThread(a->devID, a->unitNum, gridSize, blockSize);
                dim3 blocks(gridSize[0]);
                dim3 threads(blockSize[0]);

                KernelADD << <blocks, threads >> >((DTYPE*)a->data, (DTYPE*)b->data, (DTYPE*)c->data, a->unitNum, beta);
            }
        }
        else {
            // TODO!!
            ShowNTErrors("TODO!");
        }
    }
    else {
        // TODO!!
        ShowNTErrors("TODO!");
    }

    XDevice::SetGPUDevice(devIDBackup);
}

/* summation over arrays
tensor summation c = a + b * \beta (cuda version) with an input handle
>> devID - device ID (MUST >= 0)
>> handle - cuda handle
>> a - an array
>> b - another array
>> c - where we put a+b
>> size - size of the array
>> beta - the coefficient
*/
void _CudaSumWithHandle(int devID, cublasHandle_t * handle, DTYPE * a, DTYPE * b, DTYPE * c, int size, DTYPE beta)
{
    if (size == 0)
        return;

    if (c == NULL)
        c = a;

    CheckNTErrors((a && b && c), "Empty arrays in addition!");

    int devIDBackup;
    ProtectCudaDev(devID, devIDBackup);

    if (c == a) {
#ifdef DOUBELPRICSION
        cublasDaxpy(*handle, size, &beta, b, 1, a, 1);
#else
        cublasSaxpy(*handle, size, &beta, b, 1, a, 1);
#endif
    }
    else {
        int gridSize[3], blockSize[3];

        GDevs.GetCudaThread(devID, size, gridSize, blockSize);

        dim3 blocks(gridSize[0]);
        dim3 threads(blockSize[0]);

        KernelADD<<<blocks, threads>>>((DTYPE*)a, (DTYPE*)b, (DTYPE*)c, size, beta);
    }

    BacktoCudaDev(devID, devIDBackup);
}

#endif // USE_CUDA

} // namespace nts(NiuTrans.Tensor)