TSumDim.cpp 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-07-30
*/

liyinqiao committed
22
#include "../core/utilities/CheckData.h"
23
#include "../XTensor.h"
24 25
#include "../core/arithmetic/SumDim.h"
#include "../core/getandset/SetData.h"
liyinqiao committed
26
#include "TSumDim.h"
27 28 29 30 31 32

namespace nts { // namespace nts(NiuTrans.Tensor)

/* 
case 1: tensor summation c = a + b * \beta 
where the size of b is equal to the n-th dimension of a, 
33 34
i.e., a is summed with b by broadcasting.
In this case, (2, 4) + (2) = (2, 4), n = 0.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
*/
bool TestSumDim1()
{
    /* a tensor of size (2, 4) */
    int aOrder = 2;
    int * aDimSize = new int[aOrder];
    aDimSize[0] = 2;
    aDimSize[1] = 4;

    int aUnitNum = 1;
    for (int i = 0; i < aOrder; i++)
        aUnitNum *= aDimSize[i];

    /* a tensor of size (2) */
    int bOrder = 1;
    int * bDimSize = new int[bOrder];
    bDimSize[0] = 2;

    int bUnitNum = 1;
    for (int i = 0; i < bOrder; i++)
        bUnitNum *= bDimSize[i];

    DTYPE aData[2][4] = { {0.0F, 1.0F, 2.0F, 3.0F},
                          {4.0F, 5.0F, 6.0F, 7.0F} };
    DTYPE bData[2] = {1.0F, -1.0F};
    DTYPE answer[2][4] = { {1.0F, 2.0F, 3.0F, 4.0F},
                           {3.0F, 4.0F, 5.0F, 6.0F} };

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
67 68 69 70
    XTensor * a = NewTensorV2(aOrder, aDimSize);
    XTensor * b = NewTensorV2(bOrder, bDimSize);
    XTensor * c = NewTensorV2(aOrder, aDimSize);
    XTensor * cMe = NewTensorV2(aOrder, aDimSize);
71 72 73 74 75 76 77 78 79 80 81 82 83 84
    XTensor cUser;

    /* initialize variables */
    a->SetData(aData, aUnitNum);
    cMe->SetData(aData, aUnitNum);
    b->SetData(bData, bUnitNum);
    c->SetZeroAll();

    /* call SumDim function */
    _SumDim(a, b, c, 0);
    _SumDim(cMe, b, 0);
    cUser = SumDim(*a, *b, 0);

    /* check results */
liyinqiao committed
85 86 87
    cpuTest = _CheckData(c, answer, aUnitNum) &&
              _CheckData(cMe, answer, aUnitNum) &&
              _CheckData(&cUser, answer, aUnitNum);
88 89 90 91 92 93

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensor */
94 95 96 97
    XTensor * aGPU = NewTensorV2(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
    XTensor * bGPU = NewTensorV2(bOrder, bDimSize, X_FLOAT, 1.0F, 0);
    XTensor * cGPU = NewTensorV2(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
    XTensor * cMeGPU = NewTensorV2(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
98 99 100 101 102 103 104 105 106 107 108 109 110 111
    XTensor cUserGPU;

    /* Initialize variables */
    aGPU->SetData(aData, aUnitNum);
    cMeGPU->SetData(aData, aUnitNum);
    bGPU->SetData(bData, bUnitNum);
    cGPU->SetZeroAll();

    /* call sum function */
    _SumDim(aGPU, bGPU, cGPU, 0);
    _SumDim(cMeGPU, bGPU, 0);
    cUserGPU = SumDim(*aGPU, *bGPU, 0);

    /* check results */
liyinqiao committed
112 113 114
    gpuTest = _CheckData(cGPU, answer, aUnitNum) &&
              _CheckData(cMeGPU, answer, aUnitNum) &&
              _CheckData(&cUserGPU, answer, aUnitNum);
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

    /* destroy variables */
    delete a;
    delete b;
    delete c;
    delete cMe;
    delete aGPU;
    delete bGPU;
    delete cGPU;
    delete cMeGPU;
    delete[] aDimSize;
    delete[] bDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete a;
liyinqiao committed
132 133
    delete b;
    delete c;
134 135 136 137 138 139 140 141 142 143 144
    delete cMe;
    delete[] aDimSize;
    delete[] bDimSize;

    return cpuTest;
#endif // USE_CUDA
}

/* 
case 2: tensor summation c = a + b * \beta 
where the size of b is equal to the n-th dimension of a, 
145 146
i.e., a is summed with b by broadcasting.
In this case, (2, 4) + (2, 2) = (2, 4), n = 1.
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
*/
bool TestSumDim2()
{
    /* a tensor of size (2, 4) */
    int aOrder = 2;
    int * aDimSize = new int[aOrder];
    aDimSize[0] = 2;
    aDimSize[1] = 4;

    int aUnitNum = 1;
    for (int i = 0; i < aOrder; i++)
        aUnitNum *= aDimSize[i];

    /* a tensor of size (2, 2) */
    int bOrder = 2;
    int * bDimSize = new int[bOrder];
    bDimSize[0] = 2;
    bDimSize[1] = 2;

    int bUnitNum = 1;
    for (int i = 0; i < bOrder; i++)
        bUnitNum *= bDimSize[i];

    DTYPE aData[2][4] = { {0.0F, 1.0F, 2.0F, 3.0F},
                          {4.0F, 5.0F, 6.0F, 7.0F} };
    DTYPE bData[2][2] = { {1.0F, -1.0F},
                          {-1.0F, 1.0F} };
    DTYPE answer[2][4] = { {1.0F, 0.0F, 1.0F, 4.0F},
                           {5.0F, 4.0F, 5.0F, 8.0F} };

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
181 182 183 184
    XTensor * a = NewTensorV2(aOrder, aDimSize);
    XTensor * b = NewTensorV2(bOrder, bDimSize);
    XTensor * c = NewTensorV2(aOrder, aDimSize);
    XTensor * cMe = NewTensorV2(aOrder, aDimSize);
185 186 187 188 189 190 191 192 193 194 195 196 197 198
    XTensor cUser;

    /* initialize variables */
    a->SetData(aData, aUnitNum);
    cMe->SetData(aData, aUnitNum);
    b->SetData(bData, bUnitNum);
    c->SetZeroAll();

    /* call SumDim function */
    _SumDim(a, b, c, 1);
    _SumDim(cMe, b, 1);
    cUser = SumDim(*a, *b, 1);

    /* check results */
liyinqiao committed
199 200 201
    cpuTest = _CheckData(c, answer, aUnitNum) &&
              _CheckData(cMe, answer, aUnitNum) &&
              _CheckData(&cUser, answer, aUnitNum);
202 203 204 205 206 207

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensor */
208 209 210 211
    XTensor * aGPU = NewTensorV2(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
    XTensor * bGPU = NewTensorV2(bOrder, bDimSize, X_FLOAT, 1.0F, 0);
    XTensor * cGPU = NewTensorV2(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
    XTensor * cMeGPU = NewTensorV2(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
212 213 214 215 216 217 218 219 220 221 222 223 224 225
    XTensor cUserGPU;

    /* Initialize variables */
    aGPU->SetData(aData, aUnitNum);
    cMeGPU->SetData(aData, aUnitNum);
    bGPU->SetData(bData, bUnitNum);
    cGPU->SetZeroAll();

    /* call sum function */
    _SumDim(aGPU, bGPU, cGPU, 1);
    _SumDim(cMeGPU, bGPU, 1);
    cUserGPU = SumDim(*aGPU, *bGPU, 1);

    /* check results */
liyinqiao committed
226 227 228
    gpuTest = _CheckData(cGPU, answer, aUnitNum) &&
              _CheckData(cMeGPU, answer, aUnitNum) &&
              _CheckData(&cUserGPU, answer, aUnitNum);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

    /* destroy variables */
    delete a;
    delete b;
    delete c;
    delete cMe;
    delete aGPU;
    delete bGPU;
    delete cGPU;
    delete cMeGPU;
    delete[] aDimSize;
    delete[] bDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete a;
liyinqiao committed
246 247
    delete b;
    delete c;
248 249 250 251 252 253 254 255
    delete cMe;
    delete[] aDimSize;
    delete[] bDimSize;

    return cpuTest;
#endif // USE_CUDA
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
/* 
case 3: tensor summation c = a + b * \beta 
where the size of b is equal to the n-th dimension of a, 
i.e., a is summed with b by broadcasting.
In this case, 
(20, 40, 4000) + (40) = (20, 40, 4000), dim = 1.
*/
bool TestSumDim3()
{
    /* a tensor of size (20, 40, 4000) */
    int aOrder = 3;
    int * aDimSize = new int[aOrder];
    aDimSize[0] = 20;
    aDimSize[1] = 40;
    aDimSize[2] = 4000;

    int aUnitNum = 1;
    for (int i = 0; i < aOrder; i++)
        aUnitNum *= aDimSize[i];

    /* a tensor of size (40) */
    int bOrder = 1;
    int * bDimSize = new int[bOrder];
    bDimSize[0] = 40;

    int bUnitNum = 1;
    for (int i = 0; i < bOrder; i++)
        bUnitNum *= bDimSize[i];

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
289 290 291 292 293
    XTensor * a = NewTensorV2(aOrder, aDimSize);
    XTensor * b = NewTensorV2(bOrder, bDimSize);
    XTensor * c = NewTensorV2(aOrder, aDimSize);
    XTensor * cMe = NewTensorV2(aOrder, aDimSize);
    XTensor * answer = NewTensorV2(aOrder, aDimSize);
294 295 296 297 298 299 300 301 302 303 304 305 306 307
    XTensor cUser;

    /* initialize variables */
    a->SetZeroAll();
    cMe->SetZeroAll();
    _SetDataFixedFloat(b, 1.0F);
    _SetDataFixedFloat(answer, 1.0F);

    /* call SumDim function */
    _SumDim(a, b, c, 1);
    _SumDim(cMe, b, 1);
    cUser = SumDim(*a, *b, 1);
    
    /* check results */
liyinqiao committed
308 309 310
    cpuTest = _CheckData(c, answer->data, aUnitNum) &&
              _CheckData(cMe, answer->data, aUnitNum) &&
              _CheckData(&cUser, answer->data, aUnitNum);
311 312 313 314 315 316

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensor */
317 318 319 320
    XTensor * aGPU = NewTensorV2(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
    XTensor * bGPU = NewTensorV2(bOrder, bDimSize, X_FLOAT, 1.0F, 0);
    XTensor * cGPU = NewTensorV2(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
    XTensor * cMeGPU = NewTensorV2(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
321 322 323 324 325 326 327 328 329 330 331 332 333
    XTensor cUserGPU;

    /* Initialize variables */
    aGPU->SetZeroAll();
    cMe->SetZeroAll();
    _SetDataFixedFloat(bGPU, 1.0F);

    /* call sum function */
    _SumDim(aGPU, bGPU, cGPU, 1);
    _SumDim(cMeGPU, bGPU, 1);
    cUserGPU = SumDim(*aGPU, *bGPU, 1);

    /* check results */
liyinqiao committed
334 335 336
    gpuTest = _CheckData(cGPU, answer->data, aUnitNum) &&
              _CheckData(cMeGPU, answer->data, aUnitNum) &&
              _CheckData(&cUserGPU, answer->data, aUnitNum);
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

    /* destroy variables */
    delete a;
    delete b;
    delete c;
    delete cMe;
    delete answer;
    delete aGPU;
    delete bGPU;
    delete cGPU;
    delete cMeGPU;
    delete[] aDimSize;
    delete[] bDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete a;
liyinqiao committed
355 356
    delete b;
    delete c;
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
    delete cMe;
    delete answer;
    delete[] aDimSize;
    delete[] bDimSize;

    return cpuTest;
#endif // USE_CUDA
}

/* 
case 4: tensor summation c = a + b * \beta 
where the size of b is equal to the n-th dimension of a, 
i.e., a is summed with b by broadcasting.
In this case, 
(200, 40, 4000) + (40) = (200, 40, 4000), dim = 1.
*/
bool TestSumDim4()
{
    /* a tensor of size (200, 40, 4000) */
    int aOrder = 2;
    int * aDimSize = new int[aOrder];
    aDimSize[0] = 1000000;
    aDimSize[1] = 50;

    int aUnitNum = 1;
    for (int i = 0; i < aOrder; i++)
        aUnitNum *= aDimSize[i];

    /* a tensor of size (40) */
    int bOrder = 1;
    int * bDimSize = new int[bOrder];
    bDimSize[0] = 50;

    int bUnitNum = 1;
    for (int i = 0; i < bOrder; i++)
        bUnitNum *= bDimSize[i];

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
398 399 400 401 402
    XTensor * a = NewTensorV2(aOrder, aDimSize);
    XTensor * b = NewTensorV2(bOrder, bDimSize);
    XTensor * c = NewTensorV2(aOrder, aDimSize);
    XTensor * cMe = NewTensorV2(aOrder, aDimSize);
    XTensor * answer = NewTensorV2(aOrder, aDimSize);
403 404 405 406 407 408 409 410 411 412 413 414 415 416
    XTensor cUser;

    /* initialize variables */
    a->SetZeroAll();
    cMe->SetZeroAll();
    _SetDataFixedFloat(b, 1.0F);
    _SetDataFixedFloat(answer, 1.0F);

    /* call SumDim function */
    _SumDim(a, b, c, 1);
    _SumDim(cMe, b, 1);
    cUser = SumDim(*a, *b, 1);
    
    /* check results */
liyinqiao committed
417 418 419
    cpuTest = _CheckData(c, answer->data, aUnitNum) &&
              _CheckData(cMe, answer->data, aUnitNum) &&
              _CheckData(&cUser, answer->data, aUnitNum);
420 421 422 423 424 425

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensor */
426 427 428 429
    XTensor * aGPU = NewTensorV2(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
    XTensor * bGPU = NewTensorV2(bOrder, bDimSize, X_FLOAT, 1.0F, 0);
    XTensor * cGPU = NewTensorV2(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
    XTensor * cMeGPU = NewTensorV2(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
430 431 432 433 434 435 436 437 438 439 440 441 442
    XTensor cUserGPU;

    /* Initialize variables */
    aGPU->SetZeroAll();
    cMe->SetZeroAll();
    _SetDataFixedFloat(bGPU, 1.0F);

    /* call sum function */
    _SumDim(aGPU, bGPU, cGPU, 1);
    _SumDim(cMeGPU, bGPU, 1);
    cUserGPU = SumDim(*aGPU, *bGPU, 1);

    /* check results */
liyinqiao committed
443 444 445
    gpuTest = _CheckData(cGPU, answer->data, aUnitNum) &&
              _CheckData(cMeGPU, answer->data, aUnitNum) &&
              _CheckData(&cUserGPU, answer->data, aUnitNum);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

    /* destroy variables */
    delete a;
    delete b;
    delete c;
    delete cMe;
    delete answer;
    delete aGPU;
    delete bGPU;
    delete cGPU;
    delete cMeGPU;
    delete[] aDimSize;
    delete[] bDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete a;
liyinqiao committed
464 465
    delete b;
    delete c;
466 467 468 469 470 471 472 473 474
    delete cMe;
    delete answer;
    delete[] aDimSize;
    delete[] bDimSize;

    return cpuTest;
#endif // USE_CUDA
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
/* other cases */
/*
    TODO!!
*/

/* test for SumDim Function */
bool TestSumDim()
{
    XPRINT(0, stdout, "[TEST SUMDIM] tensor summation c = a + b * beta by broadcasting\n");
    bool returnFlag = true, caseFlag = true;

    /* case 1 test */
    caseFlag = TestSumDim1();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");

    /* case 2 test */
    caseFlag = TestSumDim2();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 2 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 2 passed!\n");
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    
    /* case 3 test */
    caseFlag = TestSumDim3();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 3 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 3 passed!\n");
        
    ///* case 4 test */
    //caseFlag = TestSumDim4();
    //if (!caseFlag) {
    //    returnFlag = false;
    //    XPRINT(0, stdout, ">> case 4 failed!\n");
    //}
    //else
    //    XPRINT(0, stdout, ">> case 4 passed!\n");
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

    /* other cases test */
    /*
        TODO!!
    */

    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
    }
    else
        XPRINT(0, stdout, ">> Failed!\n");

    XPRINT(0, stdout, "\n");

    return returnFlag;
}

} // namespace nts(NiuTrans.Tensor)