TReduceMax.cpp 4.49 KB
Newer Older
xiaotong committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
liyinqiao committed
19
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-06-30
xiaotong committed
20 21
*/

liyinqiao committed
22
#include "TReduceMax.h"
xiaotong committed
23

liyinqiao committed
24
namespace nts { // namespace nts(NiuTrans.Tensor)
liyinqiao committed
25 26 27 28

/* 
case 1: get the max value of the items along a dimension of the tensor. 
In this case,
liyinqiao committed
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
(2, 4) -> (4), dim = 0
(2, 4) -> (2), dim = 1
*/
bool TestReduceMax1()
{
    /* a input tensor of size (2, 4) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 2;
    sDimSize[1] = 4;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a output tensor of size (4) */
    int tOrder1 = 1;
    int * tDimSize1 = new int[tOrder1];
    tDimSize1[0] = 4;

    int tUnitNum1 = 1;
    for (int i = 0; i < tOrder1; i++)
        tUnitNum1 *= tDimSize1[i];

    /* a output tensor of size (2) */
    int tOrder2 = 1;
    int * tDimSize2 = new int[tOrder2];
    tDimSize2[0] = 2;

    int tUnitNum2 = 1;
    for (int i = 0; i < tOrder2; i++)
        tUnitNum2 *= tDimSize2[i];

liyinqiao committed
62 63 64 65
    DTYPE sData[2][4] = { {0.0F, 5.0F, 2.0F, 3.0F},
                          {4.0F, 1.0F, 6.0F, 7.0F} };
    DTYPE answer1[4] = {4.0F, 5.0F, 6.0F, 7.0F};
    DTYPE answer2[2] = {5.0F, 7.0F};
liyinqiao committed
66 67 68 69 70 71 72 73

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s = NewTensor(sOrder, sDimSize);
    XTensor * t1 = NewTensor(tOrder1, tDimSize1);
    XTensor * t2 = NewTensor(tOrder2, tDimSize2);
74 75
    XTensor tUser1;
    XTensor tUser2;
liyinqiao committed
76 77 78 79 80 81 82

    /* initialize variables */
    s->SetData(sData, sUnitNum);
    t1->SetZeroAll();
    t2->SetZeroAll();

    /* call ReduceMax function */
83 84
    _ReduceMax(s, t1, 0);
    _ReduceMax(s, t2, 1);
85 86
    tUser1 = ReduceMax(*s, 0);
    tUser2 = ReduceMax(*s, 1);
liyinqiao committed
87 88

    /* check results */
89 90
    cpuTest = t1->CheckData(answer1, tUnitNum1) && tUser1.CheckData(answer1, tUnitNum1)
        && t2->CheckData(answer2, tUnitNum2) && tUser2.CheckData(answer2, tUnitNum2);
xiaotong committed
91 92

#ifdef USE_CUDA
liyinqiao committed
93 94 95 96 97 98 99
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
    XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU1 = NewTensor(tOrder1, tDimSize1, X_FLOAT, 1.0F, 0);
    XTensor * tGPU2 = NewTensor(tOrder2, tDimSize2, X_FLOAT, 1.0F, 0);
100 101
    XTensor tUserGPU1;
    XTensor tUserGPU2;
liyinqiao committed
102 103 104 105 106 107 108

    /* initialize variables */
    sGPU->SetData(sData, sUnitNum);
    tGPU1->SetZeroAll();
    tGPU2->SetZeroAll();

    /* call ReduceMax function */
109 110
    _ReduceMax(sGPU, tGPU1, 0);
    _ReduceMax(sGPU, tGPU2, 1);
111 112
    tUserGPU1 = ReduceMax(*sGPU, 0);
    tUserGPU2 = ReduceMax(*sGPU, 1);
liyinqiao committed
113 114

    /* check results */
115 116
    gpuTest = tGPU1->CheckData(answer1, tUnitNum1) && tUserGPU1.CheckData(answer1, tUnitNum1)
        && tGPU2->CheckData(answer2, tUnitNum2) && tUserGPU2.CheckData(answer2, tUnitNum2);
liyinqiao committed
117 118 119 120 121 122 123 124 125 126 127 128 129

    /* destroy variables */
    delete s;
    delete t1;
    delete t2;
    delete sGPU;
    delete tGPU1;
    delete tGPU2;
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;

    return cpuTest && gpuTest;
xiaotong committed
130
#else
liyinqiao committed
131 132 133 134 135 136 137 138 139
    /* destroy variables */
    delete s;
    delete t1;
    delete t2;
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;

    return cpuTest;
xiaotong committed
140
#endif // USE_CUDA
liyinqiao committed
141
}
xiaotong committed
142

liyinqiao committed
143 144 145 146
/* other cases */
/*
TODO!!
*/
xiaotong committed
147

liyinqiao committed
148 149 150 151 152 153 154 155 156 157 158
/* test for ReduceMax Function */
bool TestReduceMax()
{
    XPRINT(0, stdout, "[TEST ReduceMax] get the max value of the items along a dimension of the tensor\n");
    bool returnFlag = true, caseFlag = true;

    /* case 1 test */
    caseFlag = TestReduceMax1();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
xiaotong committed
159
    }
liyinqiao committed
160 161
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");
xiaotong committed
162

liyinqiao committed
163
    /* other cases test */
xiaotong committed
164 165 166 167
    /*
    TODO!!
    */

liyinqiao committed
168 169 170 171 172
    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
    }
    else
        XPRINT(0, stdout, ">> Failed!\n");
xiaotong committed
173

liyinqiao committed
174
    XPRINT(0, stdout, "\n");
xiaotong committed
175

liyinqiao committed
176
    return returnFlag;
xiaotong committed
177 178
    }

liyinqiao committed
179
} // namespace nts(NiuTrans.Tensor)