FNNLM.cpp 30.5 KB
Newer Older
xiaotong committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
/* NiuTrans.Tensor - an open-source tensor library
 * Copyright (C) 2018, Natural Language Processing Lab, Northestern University. 
 * All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 *
 * This is a simple impelementation of the feed-forward network-baesd language
 * model (FNNLM). See more details about FNNLM in
 * "A Neural Probabilistic Language Model" by Bengio et al.
 * Journal of Machine Learning Research 3 (2003) 1137C1155
 *
 * $Created by: XIAO Tong (xiaotong@mail.neu.edu.cn) 2018-06-22
 */

#include <math.h>
#include "FNNLM.h"
#include "../../XGlobal.h"
#include "../../XUtility.h"
#include "../../XDevice.h"
#include "../../function/FHeader.h"

namespace samplefnnlm
{

#define MAX_NAME_LENGTH 1024
#define MAX_LINE_LENGTH_HERE 1024 * 32

char trainFN[MAX_NAME_LENGTH] = "";   // file name of the training data
char modelFN[MAX_NAME_LENGTH] = "";   // file name of the FNN model
char testFN[MAX_NAME_LENGTH] = "";    // file name of the test data
char outputFN[MAX_NAME_LENGTH] = "";  // file name of the result data
    
float learningRate = 0.01F;           // learning rate
int nStep = 10000000;                   // max learning steps (or model updates)
int nEpoch = 10;                      // max training epochs
float minmax = 0.08F;                 // range [-p,p] for parameter initialization
int sentBatch = 0;                    // batch size at the sentence level
int wordBatch = 1;                    // batch size at the word level
bool shuffled = false;                // shuffled the training data file or not

void LoadArgs(int argc, const char ** argv, FNNModel &model);
void Init(FNNModel &model);
void Check(FNNModel &model);
void Copy(FNNModel &tgt, FNNModel &src);
void Clear(FNNModel &model);
void InitModelTensor1D(XTensor &tensor, int num, FNNModel &model);
void InitModelTensor2D(XTensor &tensor, int rowNum, int colNum, FNNModel &model);
void Train(const char * train, bool isShuffled, FNNModel &model);
void Update(FNNModel &model, FNNModel &grad, float epsilon);
float GetProb(XTensor &output, XTensor &gold, XTensor * wordProbs = NULL);
void Dump(const char * fn, FNNModel &model);
void Read(const char * fn, FNNModel &model);
void Test(const char * test, const char * result, FNNModel &model);
int  LoadNGrams(FILE * file, int n, NGram * ngrams, int sentNum, int wordNum);
void InitZeroOneTensor2D(XTensor &tensor, int rowNum, int colNum, int * rows, int * cols, 
                         int itemNum, int devID, XMem * mem);
void MakeWordBatch(XTensor &batch, NGram * ngrams, int ngramNum, int n, int vSize, int devID, XMem * mem);
void Forward(XTensor inputs[], XTensor &output, FNNModel &model, FNNNet &net);
void Backward(XTensor inputs[], XTensor &output, XTensor &gold, LOSS_FUNCTION_NAME loss, 
              FNNModel &model, FNNModel &grad, FNNNet &net);

/* 
entry of the program 
>> argc - number of the arguments
>> argv - pointers to the arguments
<< return - error code

arguments:
 -train S: specify training data file name
 -model S: specify model file name
 -test S: specify test data file name
 -output S: specify result data file name
 -n D: order of the language model
 -eSize D: embedding size
 -vSize D: vocabulary size
 -hdepth D: number of stacked hidden layers
 -hsize D: size of each hidden layer
 -lrate F: learning rate
 -nstep D: maximum number of model updates
 -nepoch D: maximum number of training epochs
 -batch D: batch size (how many sentences)
 -wbatch D: batch size at the word level
            (how many words)
 -shuffle: shuffle the training data
 -devid D: the id of the device used
           -1: GPU, >=0: GPUs
 -mempool: use memory pools for memory management
 
 where S=string, D=integer and F=float.
 All words in the training and test data files
 are encoded as thire indeces in the vocabulary.
 E.g.,
 0 29 2 11 1
 might be a line of the file.
*/
int FNNLMMain(int argc, const char ** argv)
{
    if(argc == 0)
        return 1;

    FNNModel model;

    /* load arguments */
    LoadArgs(argc, argv, model);

    /* check the setting */
    Check(model);

    /* initialize model parameters */
    Init(model);

    /* learn model parameters */
    if(strcmp(trainFN, ""))
        Train(trainFN, shuffled, model);

    /* save the final model */
    if(strcmp(modelFN, "") && strcmp(trainFN, ""))
        Dump(modelFN, model);

    /* load the model if neccessary */
    if(strcmp(modelFN, ""))
        Read(modelFN, model);

    /* test the model on the new data */
    if(strcmp(testFN, "") && strcmp(outputFN, ""))
        Test(testFN, outputFN, model);

    return 0;
}

/* 
load arguments 
>> argc - number of the arguments
>> argv - pointers to the arguments
>> model - the fnn model
*/
void LoadArgs(int argc, const char ** argv, FNNModel &model)
{
    for(int i = 0; i < argc; i++){
        if(!strcmp(argv[i], "-train") && i + 1 < argc)
            strcpy(trainFN, argv[i + 1]);
        if(!strcmp(argv[i], "-model") && i + 1 < argc)
            strcpy(modelFN, argv[i + 1]);
        if(!strcmp(argv[i], "-test") && i + 1 < argc)
            strcpy(testFN, argv[i + 1]);
        if(!strcmp(argv[i], "-output") && i + 1 < argc)
            strcpy(outputFN, argv[i + 1]);
        if(!strcmp(argv[i], "-n") && i + 1 < argc)
            model.n = atoi(argv[i + 1]);
        if(!strcmp(argv[i], "-esize") && i + 1 < argc)
            model.eSize = atoi(argv[i + 1]);
        if(!strcmp(argv[i], "-vsize") && i + 1 < argc)
            model.vSize = atoi(argv[i + 1]);
        if(!strcmp(argv[i], "-hdepth") && i + 1 < argc)
            model.hDepth = atoi(argv[i + 1]);
        if(!strcmp(argv[i], "-hsize") && i + 1 < argc)
            model.hSize = atoi(argv[i + 1]);
        if(!strcmp(argv[i], "-lrate") && i + 1 < argc)
            learningRate = (float)atof(argv[i + 1]);
        if(!strcmp(argv[i], "-nstep") && i + 1 < argc)
            nStep = atoi(argv[i + 1]);
        if(!strcmp(argv[i], "-nepoch") && i + 1 < argc)
            nEpoch = atoi(argv[i + 1]);
        if(!strcmp(argv[i], "-minmax") && i + 1 < argc)
            minmax = (float)fabs(atof(argv[i + 1]));
        if(!strcmp(argv[i], "-batch") && i + 1 < argc)
            sentBatch = atoi(argv[i + 1]);
        if(!strcmp(argv[i], "-wbatch") && i + 1 < argc)
            wordBatch = atoi(argv[i + 1]);
        if(!strcmp(argv[i], "-shuffle"))
            shuffled = true;
        if(!strcmp(argv[i], "-dev") && i + 1 < argc)
            model.devID = atoi(argv[i + 1]);
    }

    for(int i = 0; i < argc; i++){
        if(!strcmp(argv[i], "-mempool"))
            model.mem = new XMem(model.devID);
    }
}

/* check model settings */
void Check(FNNModel &model)
{
    CheckErrors(model.n > 0 && model.n <= MAX_N_GRAM, "The LM order is out of range (use -n)!");
    CheckErrors(model.vSize > 0, "no vocabulary size found (use -vsize)!");
}

/* make a hard copy of the fnn model */
void Copy(FNNModel &tgt, FNNModel &src)
{
    InitTensor(&tgt.embeddingW, &src.embeddingW);
    for(int i = 0; i < MAX_HIDDEN_NUM; i++){
        InitTensor(&tgt.hiddenW[i], &src.hiddenW[i]);
        InitTensor(&tgt.hiddenB[i], &src.hiddenB[i]);
    }
    InitTensor(&tgt.outputW, &src.outputW);
    InitTensor(&tgt.outputB, &src.outputB);

    tgt.n = src.n;
    tgt.eSize = src.eSize;
    tgt.hDepth = src.hDepth;
    tgt.hSize = src.hSize;
    tgt.vSize = src.vSize;
    tgt.devID = src.devID;
    tgt.useMemPool = src.useMemPool;
    if(src.mem != NULL){
        tgt.mem = new XMem(src.mem->devID, src.mem->mode, 
                           src.mem->maxBlockSize, src.mem->blockNum, 
                           src.mem->bufSize);
    }
}

/* reset model parameters */
void Clear(FNNModel &model)
{
    model.embeddingW.SetZeroAll();
    for(int i = 0; i < MAX_HIDDEN_NUM; i++){
        model.hiddenW[i].SetZeroAll();
        model.hiddenB[i].SetZeroAll();
    }
    model.outputW.SetZeroAll();
    model.outputB.SetZeroAll();
}

/* 
initialize a 1d tensor using the fnn model setting 
>> tensor - the tensor to initialize
>> num - number of items
>> model - the fnn model
*/
void InitModelTensor1D(XTensor &tensor, int num, FNNModel &model)
{
    InitTensor1D(&tensor, num, X_FLOAT, model.devID, model.mem);
}

/* 
initialize a 2d tensor using the fnn model setting 
>> tensor - the tensor to initialize
>> rowNum - number of rows
>> colNum - number of columns
>> model - the fnn model
*/
void InitModelTensor2D(XTensor &tensor, int rowNum, int colNum, FNNModel &model)
{
    InitTensor2D(&tensor, rowNum, colNum, X_FLOAT, model.devID, model.mem);
}


/* initialize the model */
void Init(FNNModel &model)
{
    /* create embedding parameter matrix: vSize * eSize */
    InitModelTensor2D(model.embeddingW, model.vSize, model.eSize, model);
    
    /* create hidden layer parameter matrics */
    for(int i = 0; i < model.hDepth; i++){
        /* hidden layer parameter matrix: (n-1)eSize * hsize if it is the first layer
                                           hsize * hsize otherwise */
        if(i == 0)
            InitModelTensor2D(model.hiddenW[i], (model.n - 1) * model.eSize, model.hSize, model);
        else
            InitModelTensor2D(model.hiddenW[i], model.hSize, model.hSize, model);
        
        /* bias term: a row vector of hSize entries */
        InitModelTensor1D(model.hiddenB[i], model.hSize, model);
    }
    
    /* create the output layer parameter matrix and bias term */
    int iSize = model.hDepth == 0 ? (model.n - 1) * model.eSize : model.hSize;
    InitModelTensor2D(model.outputW, iSize, model.vSize, model);
    InitModelTensor1D(model.outputB, model.vSize, model);
    
    /* then, we initialize model parameters using a uniform distribution in range
       of [-minmax, minmax] */
    model.embeddingW.SetDataRand(-minmax, minmax);
    model.outputW.SetDataRand(-minmax, minmax);
    for(int i = 0; i < model.hDepth; i++)
        model.hiddenW[i].SetDataRand(-minmax, minmax);
    
    /* all bias terms are set to zero */
    model.outputB.SetZeroAll();
    for(int i = 0; i < model.hDepth; i++)
        model.hiddenB[i].SetZeroAll();
}
    
/*
 shuffle lines of the file
 >> srcFile - the source file to shuffle
 >> tgtFile - the resulting file
 */
void Shuffle(const char * srcFile, const char * tgtFile)
{
    char * line = new char[MAX_LINE_LENGTH_HERE];
#ifndef WIN32
    sprintf(line, "shuf %s > %s", srcFile, tgtFile);
    system(line);
#else
    ShowErrors("Cannot shuffle the file on WINDOWS systems!");
#endif
    delete[] line;
    
}
    
char lineBuf[MAX_LINE_LENGTH_HERE];
int wordBuf[MAX_LINE_LENGTH_HERE];

/* 
train the model with the standard SGD method
>> train - training data file
>> isShuffled - shuffle the data file or not
>> model - the fnn model
*/
void Train(const char * train, bool isShuffled, FNNModel &model)
{
    char name[MAX_NAME_LENGTH];
    
    /* shuffle the data */
    if(isShuffled){
        sprintf(name, "%s-tmp", train);
        Shuffle(train, name);
    }
    else
        strcpy(name, train);
    
    int epoch = 0;
    int step = 0;
    int wordCount = 0;
    int wordCountTotal = 0;
    int ngramNum = 1;
    float loss = 0;
    bool isEnd = false;
    
    NGram * ngrams = new NGram[MAX_LINE_LENGTH_HERE];

    /* make a model to keep gradients */
    FNNModel grad;
    Copy(grad, model);

    double startT = GetClockSec();
    
    /* iterate for a number of epochs */
    for(epoch = 0; epoch < nEpoch; epoch++){

        /* data file */
        FILE * file = fopen(name, "rb");
        CheckErrors(file, "Cannot open the training file");

        wordCount = 0;
        loss = 0;
        ngramNum = 1;

        while(ngramNum > 0){
            
            /* load a minibatch of ngrams */
            ngramNum = LoadNGrams(file, model.n, ngrams, sentBatch, wordBatch);

            if (ngramNum <= 0)
                break;

            /* previous n - 1 words */
            XTensor inputs[MAX_N_GRAM];

            /* the predicted word */
            XTensor output;

            /* the gold standard */
            XTensor gold;

            /* prepare an empty network for building the fnn */
            FNNNet net;

            /* make the input tensor for position i */
            for(int i = 0; i < model.n - 1; i++)
                MakeWordBatch(inputs[i], ngrams, ngramNum, i, model.vSize, model.devID, model.mem);

            /* make the gold tensor */
            MakeWordBatch(gold, ngrams, ngramNum, model.n - 1, model.vSize, model.devID, model.mem);

            /* gradident = 0 */
            Clear(grad);

            /* forward computation */
            Forward(inputs, output, model, net);

            /* backward computation to obtain gradients */
            Backward(inputs, output, gold, CROSSENTROPY, model, grad, net);

            /* update model parameters */
            Update(model, grad, learningRate);
                
            /* get probabilities */
            float prob = GetProb(output, gold);
                
            loss += -prob;
            wordCount += ngramNum;
            wordCountTotal += ngramNum;
            
            if(++step >= nStep){
                isEnd = true;
                break;
            }

            if (step % 100 == 0) {
                double elapsed = GetClockSec() - startT;
                XPRINT5(0, stderr, "[INFO] elapsed=%.1fs, step=%d, epoch=%d, ngram=%d, ppl=%.3f\n",
                           elapsed, step, epoch + 1, wordCountTotal, exp(loss / wordCount));
            }
        }

        fclose(file);
        
        if(isEnd)
            break;
    }

    double elapsed = GetClockSec() - startT;
    
    XPRINT5(0, stderr, "[INFO] elapsed=%.1fs, step=%d, epoch=%d, ngram=%d, ppl=%.3f\n", 
               elapsed, step, epoch, wordCountTotal, exp(loss / wordCount));
    XPRINT3(0, stderr, "[INFO] training finished (took %.1fs, step=%d and epoch=%d)\n", 
               elapsed, step, epoch);
    
    delete[] ngrams;
}

/* 
update the model parameters using the delta rule
>> model - the model to update
>> grad - gradients
>> epsilon - learning rate
*/
void Update(FNNModel &model, FNNModel &grad, float epsilon)
{
    XList paraList(10);
    XList gradList(10);

    paraList.Add(&model.outputW);
    gradList.Add(&grad.outputW);
    paraList.Add(&model.outputB);
    gradList.Add(&grad.outputB);

    for (int i = 0; i < model.hDepth; i++) {
        paraList.Add(&model.hiddenW[i]);
        gradList.Add(&grad.hiddenW[i]);
        paraList.Add(&model.hiddenB[i]);
        gradList.Add(&grad.hiddenB[i]);
    }

    paraList.Add(&model.embeddingW);
    gradList.Add(&grad.embeddingW);

    for (int i = 0; i < paraList.count; i++) {
        XTensor * para = (XTensor*)paraList.GetItem(i);
        XTensor * paraGrad = (XTensor*)gradList.GetItem(i);

        /* the delta rule */
471
        _Sum(para, paraGrad, para, -epsilon);
xiaotong committed
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
    }
}
  
/*
get prediction probabilites of the gold words
>> output - output probabilities
>> gold - gold standard
>> 
<< return - probability of the batch
*/
float GetProb(XTensor &output, XTensor &gold, XTensor * wordProbs)
{
    XTensor probs;
    InitTensor(&probs, &output);
    
    /* probs[i,j] = output[i,j] * gold[i,j] */
488
    Multiply(&output, &gold, &probs, 0);
xiaotong committed
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

    /* probability of each word */
    XTensor wprobs;
    InitTensor1D(&wprobs, output.GetDim(0), output.dataType, output.devID, output.mem);
    ReduceSum(&probs, &wprobs, 1);
    if(wordProbs != NULL)
        CopyValues(&wprobs, wordProbs);

    /* reshape the tensor to fit it into the reduce procedure 
       TODO: XTensor supports scalars */
    int dims[2];
    dims[0] = 1;
    dims[1] = probs.unitNum;
    probs.Reshape(2, dims);
 
    /* probability for the batch */
    XTensor result;
    InitTensor1D(&result, 1, X_FLOAT, output.devID, output.mem);
    ReduceSum(&probs, &result, 1);
    
    return result.Get1D(0);
}

int pin = 0;
int wordBufCount = 0;

/*
load a minibatch of ngrams
>> file - data file
>> n - order of the language model
>> ngrams - the loaded ngrams
>> sentNum - maximum sentences kept in the minibatch
>> wordNum - maximum words kept in the minibatch
*/
int LoadNGrams(FILE * file, int n, NGram * ngrams, int sentNum, int wordNum)
{
    int num = 0;
    int lineNum = 0;
    while(pin > 0 || fgets(lineBuf, MAX_LINE_LENGTH_HERE - 1, file)){
        if(pin <= 0){
            int len = (int)strlen(lineBuf);

            if(lineBuf[len - 1] == '\r')
                lineBuf[len - 1] = 0;

            len = (int)strlen(lineBuf);
            if(len == 0)
                continue;
        
            /* how many characters are in a word */
            int wSize = 0;
        
            /* how many words are in the sentence */
            int wNum = 0;

            for(int i = pin; i < len; i++){
                /* load word (id) seperated by space or tab */
                if((lineBuf[i] == ' ' || lineBuf[i] == '\t' || i == len - 1) && wSize > 0){
                    lineBuf[i] = 0;
                    wordBuf[wNum++] = atoi(lineBuf + i - wSize);
                    wSize = 0;
                }
                else
                    wSize++;
            }

            wordBufCount = wNum;
            lineNum++;
        }
        else
            lineNum = 1;

        int i = -MAX_INT;

        /* create ngrams */
        for(i = MAX(pin, n - 1); i < wordBufCount - 1; i++){
            memcpy(ngrams[num++].words, wordBuf + i - n + 1, sizeof(int) * n);
            if(num >= wordNum)
                break;
        }

        /* set a finished flag if we reach the end of the sentence*/
        if(i >= wordBufCount - 1){
            pin = 0;
            wordBufCount = 0;
        }
        /* record where to start next time if we break in the middle */
        else{
            pin = i + 1;
        }
        
        if((sentNum > 0 && lineNum >= sentNum) || num >= wordNum)
            break;
    }
    
    return num;
}

/*
make a 2d tensor in zero-one representation
The indexed cell is set to 1, and 0 otherwise.
>> tensor - the tensor to initialize
>> rowNum - number of rows
>> colNum - number of columns
>> rows - row index
>> cols - column index
>> itemNum - number of non-zero items
>> devID - device id
>> mem - memory pool
*/
void InitZeroOneTensor2D(XTensor &tensor, int rowNum, int colNum, int * rows, int * cols, int itemNum, int devID, XMem * mem)
{
    if(devID >= 0 || (mem != NULL && mem->devID >= 0))
        InitTensor2D(&tensor, rowNum, colNum, X_FLOAT, -1);
    else
        InitTensor2D(&tensor, rowNum, colNum, X_FLOAT, devID, mem);

    tensor.SetZeroAll();

    /* set none-zero cells */
    for(int i = 0; i < itemNum; i++)
        tensor.Set2D(1.0F, rows[i], cols[i]);

    if(devID >= 0 || (mem != NULL && mem->devID >= 0)){
        XList list(1);
        list.Add(&tensor);
        CPUToGPUFlush(&list, devID, mem);
    }
}

/*
make a tensor that encodes a batch of words
>> batch - the tensor encoding a batch of words
>> ngrams - the ngram batch
>> ngramNum - batch size
>> n - indicate which word is encode for each ngram
>> vSize - vocabulary size
>> devID - device id
>> mem - memory pool
*/
void MakeWordBatch(XTensor &batch, NGram * ngrams, int ngramNum, int n, int vSize, int devID, XMem * mem)
{
    int * rows = new int[ngramNum];
    int * cols = new int[ngramNum];

    for(int i = 0; i < ngramNum; i++){
        rows[i] = i;
        cols[i] = ngrams[i].words[n];
    }

    InitZeroOneTensor2D(batch, ngramNum, vSize, rows, cols, ngramNum, devID, mem);

    delete[] rows;
    delete[] cols;
}

/*
forward procedure
>> inputs - input word representations
>> output - output probability
>> model - the fnn model
>> net - the network that keeps the internal tensors generated in the process
*/
void Forward(XTensor inputs[], XTensor &output, FNNModel &model, FNNNet &net)
{
    int batchSize = -1;
    int n = model.n;
    int depth = model.hDepth;
    XList eList(n - 1);

    /* previoius n - 1 words */
    for(int i = 0; i < n - 1; i++){
        XTensor &input = inputs[i];
        XTensor &w = model.embeddingW;
        XTensor &embedding = net.embeddings[i];

        if(batchSize == -1)
            batchSize = input.dimSize[0];
        else{
            CheckErrors(batchSize == input.dimSize[0], "Wrong input word representations!");
        }

        /* embedding output tensor of position i */
        InitModelTensor2D(embedding, batchSize, model.eSize, model);

        /* generate word embedding of position i:
           embedding = input * w   */
        MatrixMul(&input, X_NOTRANS, &w, X_NOTRANS, &embedding);

        eList.Add(&net.embeddings[i]);
    }

    /* concatenate word embeddings
       embeddingcat = cat(embedding_0...embedding_{n-1}) */
    InitModelTensor2D(net.embeddingCat, batchSize, (n - 1) * model.eSize, model);
    Concatenate(&eList, &net.embeddingCat, 1);

    /* go over each hidden layer */
    for(int i = 0; i < depth; i++){
        XTensor &h_pre = i == 0 ? net.embeddingCat : net.hiddens[i - 1];
        XTensor &w = model.hiddenW[i];
        XTensor &b = model.hiddenB[i];
        XTensor &h = net.hiddens[i];
        XTensor &s = net.hiddenStates[i];

        InitModelTensor2D(h, batchSize, model.hSize, model);
        InitModelTensor2D(s, batchSize, model.hSize, model);

        /* generate hidden states of layer i: 
           s = h_pre * w    */
        MatrixMul(&h_pre, X_NOTRANS, &w, X_NOTRANS, &s);

        /* make a 2d tensor for the bias term */
        XTensor b2D;
        InitTensor(&b2D, &s);
        Unsqueeze(&b, &b2D, 0, batchSize);

        /* introduce bias term:
           s = s + b
           NOTE: the trick here is to extend b to a 2d tensor
                 to fit into the 2d representation in tensor summation */
710
        _Sum(&s, &b2D, &s);
xiaotong committed
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

        /* pass the state through the hard tanh function:
           h = tanh(s) */
        HardTanH(&s, &h);
    }

    /* generate the output Pr(w_{n-1}|w_0...w_{n-2}):
       y = softmax(h_last * w) 
       Note that this is the implementation as that in Bengio et al.' paper.
       TODO: we add bias term here */
    {
        XTensor &h_last = depth > 0 ? net.hiddens[depth - 1] : net.embeddingCat;
        XTensor &w = model.outputW;
        XTensor &b = model.outputB;
        XTensor &s = net.stateLast;
        XTensor &y = output;

        InitModelTensor2D(s, batchSize, model.vSize, model);
        InitModelTensor2D(y, batchSize, model.vSize, model);

        /* s = h_last * w  */
        MatrixMul(&h_last, X_NOTRANS, &w, X_NOTRANS, &s);

        XTensor b2D;
        InitTensor(&b2D, &s);
        Unsqueeze(&b, &b2D, 0, batchSize);

738
        _Sum(&s, &b2D, &s);
xiaotong committed
739 740 741 742

        /* y = softmax(s) */
        LogSoftmax(&s, &y, 1);
    }
743 744
    
    
xiaotong committed
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
}

/*
backward procedure
>> inputs - input word representations
>> output - output probability
>> gold - gold standard
>> loss - loss function name
>> model - the fnn model
>> grad - the model that keeps the gradient information
>> net - the network that keeps the internal tensors generated in the process
*/
void Backward(XTensor inputs[], XTensor &output, XTensor &gold, LOSS_FUNCTION_NAME loss, 
              FNNModel &model,  FNNModel &grad, FNNNet &net)
{
    int batchSize = output.GetDim(0);
    int n = model.n;
    int depth = model.hDepth;

    /* back-propagation for the output layer */
    XTensor &y = output;
    XTensor &s = net.stateLast;
    XTensor &x = depth > 0 ? net.hiddens[depth - 1] : net.embeddingCat;
    XTensor &w = model.outputW;
    XTensor &dedw = grad.outputW;
    XTensor &dedb = grad.outputB;
    XTensor deds(&y);
    XTensor dedx(&x);

    /* for y = softmax(s), we get dE/ds
        where E is the error function (define by loss) */
    LogSoftmaxBackward(&gold, &y, &s, NULL, &deds, 1, loss);

    /* for s = x * w, we get 
       dE/w_{i,j} = dE/ds_j * ds/dw_{i,j} 
                  = dE/ds_j * x_{i}
       (where i and j are the row and column indices, and
        x is the top most hidden layer)
       so we know 
       dE/dw = x^T * dE/ds */
    MatrixMul(&x, X_TRANS, &deds, X_NOTRANS, &dedw);

    /* gradient of the bias: dE/db = dE/ds * 1 = dE/ds
    specifically dE/db_{j} = \sum_{i} dE/ds_{i,j} */
    ReduceSum(&deds, &dedb, 0);

    /* then, we compute 
       dE/dx_{j} = \sum_j' (dE/ds_{j'} * ds_{j'}/dx_j) 
                 = \sum_j' (dE/ds_{j'} * w_{j, j'})
       i.e., 
       dE/dx = dE/ds * w^T */
    MatrixMul(&deds, X_NOTRANS, &w, X_TRANS, &dedx);

    XTensor &gradPassed = dedx;
    XTensor dedsHidden;
    XTensor dedxBottom;
    if (depth > 0)
        InitTensor(&dedsHidden, &dedx);
    InitTensor(&dedxBottom, &net.embeddingCat);

    /* back-propagation from top to bottom in the stack of hidden layers
       for each layer, h = f(s)
                       s = x * w + b */
    for (int i = depth - 1; i >= 0; i--) {
        XTensor &h = net.hiddens[i];
        XTensor &s = net.hiddenStates[i];
        XTensor &x = i == 0 ? net.embeddingCat : net.hiddenStates[i - 1];
        XTensor &w = model.hiddenW[i];
        XTensor &dedh = gradPassed;  // gradient passed though the previous layer
        XTensor &dedx = i == 0 ? dedxBottom : dedh;
        XTensor &deds = dedsHidden;
        XTensor &dedw = grad.hiddenW[i];
        XTensor &dedb = grad.hiddenB[i];
        
        /* backpropagation through the activation fucntion: 
           dE/ds = dE/dh * dh/ds */
        HardTanHBackward(NULL, &h, &s, &dedh, &deds, NOLOSS);

        /* gradient of the weight: dE/dw = x^T * dE/ds   */
        MatrixMul(&x, X_TRANS, &deds, X_NOTRANS, &dedw);

        /* gradient of the bias: dE/db = dE/ds * 1 = dE/ds
           specifically dE/db_{j} = \sum_{i} dE/ds_{i,j} */
        ReduceSum(&deds, &dedb, 0);

        /* gradient of the input: dE/dx = dE/ds * w^T    */
        MatrixMul(&deds, X_NOTRANS, &w, X_TRANS, &dedx);

        if (i > 0)
            CopyValues(&dedx, &gradPassed);
    }

    XList eList(n - 1);

    /* back-propagation for the embedding layer */
    for (int i = 0; i < n - 1; i++) {
        XTensor * dedy = NewTensor2D(batchSize, model.eSize, X_FLOAT, model.devID, model.mem);
        eList.Add(dedy);
    }

    /* gradient of the concatenation of the embedding layers */
    XTensor &dedyCat = depth > 0 ? dedxBottom : dedx;

    /* split the concatenation of gradients of the embeddings */
    Split(&dedyCat, &eList, 1, n - 1);

    /* go over for each word */
    for (int i = 0; i < n - 1; i++) {
        XTensor * dedy = (XTensor*)eList.GetItem(i);
        XTensor &x = inputs[i];
        XTensor &dedw = grad.embeddingW;

        /* gradient of the embedding weight: dE/dw += x^T * dE/dy 
           NOTE that we accumulate dE/dw here because the matrix w
           is shared by several layers (or words) */
860
        MatrixMul(&x, X_TRANS, dedy, X_NOTRANS, &dedw, 1.0F, 1.0F);
xiaotong committed
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

        delete dedy;
    }
}

/* 
dump the model to the disk space
>> fn - where to keep the model
>> model - the fnn model
*/
void Dump(const char * fn, FNNModel &model)
{
    FILE * file = fopen(fn, "wb");
    CheckErrors(file, "Cannot open the model file");

    model.embeddingW.Dump(file, "embedding w:");
    for (int i = 0; i < model.hDepth; i++) {
        char name[MAX_NAME_LENGTH];
        sprintf(name, "hidden %d w:", i);
        model.hiddenW[i].Dump(file, name);
        sprintf(name, "hidden %d b:", i);
        model.hiddenB[i].Dump(file, name);
    }

    model.outputW.Dump(file, "output w:");
    model.outputB.Dump(file, "output b:");

    fclose(file);

    XPRINT(0, stderr, "[INFO] model saved\n");
}

/* 
read the model from the disk space
>> fn - where to keep the model
>> model - the fnn model
*/
void Read(const char * fn, FNNModel &model)
{
    FILE * file = fopen(fn, "rb");
    CheckErrors(file, "Cannot open the model file");

    model.embeddingW.Read(file, "embedding w:");
    for (int i = 0; i < model.hDepth; i++) {
        char name[MAX_NAME_LENGTH];
        sprintf(name, "hidden %d w:", i);
        model.hiddenW[i].Read(file, name);
        sprintf(name, "hidden %d b:", i);
        model.hiddenB[i].Read(file, name);
    }

    model.outputW.Read(file, "output w:");
    model.outputB.Read(file, "output b:");

    fclose(file);

    XPRINT(0, stderr, "[INFO] model loaded\n");
}

/* 
test the model
>> test - test data file
>> result - where to keep the result
>> model - the fnn model
*/
void Test(const char * test, const char * result, FNNModel &model)
{
    int wordCount = 0;
    int sentCount = 0;
    float loss = 0;

    NGram * ngrams = new NGram[MAX_LINE_LENGTH_HERE];

    double startT = GetClockSec();

    /* data files */
    FILE * file = fopen(test, "rb");
    CheckErrors(file, "Cannot read the test file");
    FILE * ofile = fopen(result, "wb");
    CheckErrors(ofile, "Cannot open the output file");

    int ngramNum = 1;
    while (ngramNum > 0) {

        /* load a minibatch of ngrams */
        ngramNum = LoadNGrams(file, model.n, ngrams, 1, MAX_INT);

        if (ngramNum <= 0)
            break;

        /* previous n - 1 words */
        XTensor inputs[MAX_N_GRAM];

        /* the predicted word */
        XTensor output;

        /* the gold standard */
        XTensor gold;

        /* prepare an empty network for building the fnn */
        FNNNet net;

        /* make the input tensor for position i */
        for (int i = 0; i < model.n - 1; i++)
            MakeWordBatch(inputs[i], ngrams, ngramNum, i, model.vSize, model.devID, model.mem);

        /* make the gold tensor */
        MakeWordBatch(gold, ngrams, ngramNum, model.n - 1, model.vSize, model.devID, model.mem);

        /* forward computation */
        Forward(inputs, output, model, net);

        /* prediction probabilities */
        XTensor probs;
        InitTensor1D(&probs, ngramNum);

        /* get probabilities */
        float prob = GetProb(output, gold, &probs);

        /* dump the test result */
        for (int i = 0; i < model.n - 1; i++)
            fprintf(ofile, "%d ", ngrams[0].words[i]);
        for (int i = 0; i < ngramNum; i++)
            fprintf(ofile, "%d ", ngrams[i].words[model.n - 1]);
        fprintf(ofile, "||| ");
        for (int i = 0; i < model.n - 1; i++)
            fprintf(ofile, "<s> ");
        for (int i = 0; i < ngramNum; i++)
            fprintf(ofile, "%f ", probs.Get1D(i));
        fprintf(ofile, "||| %f\n", prob);

        loss += -prob;
        wordCount += ngramNum;
        sentCount += 1;
    }

    fclose(file);

    double elapsed = GetClockSec() - startT;

    XPRINT1(0, stderr, "[INFO] ppl=%.2f\n", exp(loss/wordCount));
    XPRINT3(0, stderr, "[INFO] test finished (took %.1fs, sentence=%d and ngram=%d)\n", 
               elapsed, sentCount, wordCount);

    delete[] ngrams;
}

};