Sigmoid.cu 4.2 KB
Newer Older
xiaotong committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* NiuTrans.Tensor - an open-source tensor library
 * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. 
 * All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
19 20
 * $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-25
 */
xiaotong committed
21 22 23 24

#include "Sigmoid.h"
#include "Sigmoid.cuh"
#include "Loss.cuh"
25
#include "CrossEntropy.cuh"
xiaotong committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#include "../XDevice.h"

#ifdef USE_CUDA

// the CUDA stuff
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <cuda.h>

#endif

namespace nts{ // namespace nts(NiuTrans.Tensor)

#ifdef USE_CUDA

/* 
sigmoid function y = 1/(1+exp(-x))  (Cuda kernel) 
>> x - input data pointer
>> y - output data pointer
>> size - size of input/output
*/
__global__ 
void KernelSigmoidCompute(DTYPE * x, DTYPE * y, int size)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;

    if (i < size){
        y[i] = 1/(1+exp(-x[i]));
    }
}

/*
sigmoid function y = 1/(1+exp(-x)) (Cuda version)
>> x - input vector
>> y - result
*/
62
void _CudaSigmoid(const XTensor * x, XTensor * y)
xiaotong committed
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
{
    if(x->dataType == DEFAULT_DTYPE && y->dataType == DEFAULT_DTYPE){

        CheckNTErrors(!x->isSparse && !y->isSparse, "the activation function (rectify) does not support sparse matrices.");
        CheckNTErrors(x->unitNum && y->unitNum, "we require two vectors with the same length.");

        int gridSize[3], blockSize[3];

        GDevs.GetCudaThread(x->devID, x->unitNum, gridSize, blockSize);

        int devIDBackup;
        ProtectCudaDev(x->devID, devIDBackup);

        KernelSigmoidCompute<<<dim3(gridSize[0]), dim3(blockSize[0])>>>((DTYPE*)x->data, (DTYPE*)y->data, x->unitNum);

        BacktoCudaDev(x->devID, devIDBackup);
    }
    else
        ShowNTErrors("TODO!");
}

/* 
sigmoid backward computation of dE/dx (Cuda kernel)

dE/ds = dE/dy * dy/dx

sigmoid: y = 1/(1+exp(-x))

   and dy/ds = y * (1 -y)

>> dedy - dE/dy
>> dedx - dE/ds
>> gold - gold standard
>> y - output of the function
>> x - input of the function
>> size - size of output/input
*/
__global__ 
void KernelSigmoidBackward(DTYPE * dedy, DTYPE * dedx, DTYPE * gold, DTYPE * y, DTYPE * x, int size)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;

    if (i < size){
        dedx[i] = dedy[i] * y[i] * ((DTYPE)1.0 - y[i]);
    }
}

/*
backward computation (Cuda version)

dE/ds = dE/dy * dy/dx

sigmoid: y = 1/(1+exp(-x))

   and dy/dx = y * (1 -y)

>> gold - gold standard to measure error (or loss)
>> y - output of the function
>> x - input of the function
>> dedy - dE/dy
>> dedx - dE/dx
>> lossName - type of loss function, e.g., cross entropy
*/
126 127 128
void _CudaSigmoidBackward(XTensor * gold, XTensor * y, XTensor * x, 
                          XTensor * dedy, XTensor * dedx,
                          LOSS_FUNCTION_NAME lossName)
xiaotong committed
129 130 131
{
    if(x->dataType == DEFAULT_DTYPE && y->dataType == DEFAULT_DTYPE){
        /* calculate dE/dy */
132 133 134
        if(lossName == CROSSENTROPY)
            _CudaCrossEntropyBackward(dedy, y, gold);
        else if(lossName != NOLOSS)
135
            _LossBackward(dedy, gold, y, lossName);
xiaotong committed
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

        
        int gridSize[3], blockSize[3];

        GDevs.GetCudaThread(x->devID, x->unitNum, gridSize, blockSize);

        int devIDBackup;
        ProtectCudaDev(x->devID, devIDBackup);

        /* dE/ds = dE/dy * dy/ds */
        KernelSigmoidBackward<<<dim3(gridSize[0]),dim3(blockSize[0])>>>
                              ((DTYPE*)dedy->data, 
                               (DTYPE*)dedx->data,
                                gold == NULL ? NULL : (DTYPE*)gold->data, 
                               (DTYPE*)y->data, (DTYPE*)x->data, 
                                x->unitNum);

        BacktoCudaDev(x->devID, devIDBackup);
    }
    else
        ShowNTErrors("TODO!");
}

#endif

} // namespace nts(NiuTrans.Tensor)