TReduceMax.cpp 6.85 KB
Newer Older
huchi committed
1
/* NiuTrans.Tensor - an open-source tensor library
hello committed
2
* Copyright (C) 2017, Natural Language Processing Lab, Northeastern University.
huchi committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-06-30
*/

22
#include "../core/utilities/CheckData.h"
huchi committed
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
#include "TReduceMax.h"

namespace nts { // namespace nts(NiuTrans.Tensor)

/* 
case 1: get the max value of the items along a dimension of the tensor. 
In this case,
(2, 4) -> (4), dim = 0
(2, 4) -> (2), dim = 1
*/
bool TestReduceMax1()
{
    /* a input tensor of size (2, 4) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 2;
    sDimSize[1] = 4;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a output tensor of size (4) */
    int tOrder1 = 1;
    int * tDimSize1 = new int[tOrder1];
    tDimSize1[0] = 4;

    int tUnitNum1 = 1;
    for (int i = 0; i < tOrder1; i++)
        tUnitNum1 *= tDimSize1[i];

    /* a output tensor of size (2) */
    int tOrder2 = 1;
    int * tDimSize2 = new int[tOrder2];
    tDimSize2[0] = 2;

    int tUnitNum2 = 1;
    for (int i = 0; i < tOrder2; i++)
        tUnitNum2 *= tDimSize2[i];

    DTYPE sData[2][4] = { {0.0F, 5.0F, 2.0F, 3.0F},
                          {4.0F, 1.0F, 6.0F, 7.0F} };
    DTYPE answer1[4] = {4.0F, 5.0F, 6.0F, 7.0F};
    DTYPE answer2[2] = {5.0F, 7.0F};

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
72 73 74
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * t1 = NewTensorV2(tOrder1, tDimSize1);
    XTensor * t2 = NewTensorV2(tOrder2, tDimSize2);
huchi committed
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    XTensor tUser1;
    XTensor tUser2;

    /* initialize variables */
    s->SetData(sData, sUnitNum);
    t1->SetZeroAll();
    t2->SetZeroAll();

    /* call ReduceMax function */
    _ReduceMax(s, t1, 0);
    _ReduceMax(s, t2, 1);
    tUser1 = ReduceMax(*s, 0);
    tUser2 = ReduceMax(*s, 1);

    /* check results */
hello committed
90 91 92 93
    cpuTest = _CheckData(t1, answer1, tUnitNum1, 1e-4F) &&
              _CheckData(&tUser1, answer1, tUnitNum1, 1e-4F) &&
              _CheckData(t2, answer2, tUnitNum2, 1e-4F) &&
              _CheckData(&tUser2, answer2, tUnitNum2, 1e-4F);
huchi committed
94 95 96 97 98 99

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
100 101 102
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU1 = NewTensorV2(tOrder1, tDimSize1, X_FLOAT, 1.0F, 0);
    XTensor * tGPU2 = NewTensorV2(tOrder2, tDimSize2, X_FLOAT, 1.0F, 0);
huchi committed
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    XTensor tUserGPU1;
    XTensor tUserGPU2;

    /* initialize variables */
    sGPU->SetData(sData, sUnitNum);
    tGPU1->SetZeroAll();
    tGPU2->SetZeroAll();

    /* call ReduceMax function */
    _ReduceMax(sGPU, tGPU1, 0);
    _ReduceMax(sGPU, tGPU2, 1);
    tUserGPU1 = ReduceMax(*sGPU, 0);
    tUserGPU2 = ReduceMax(*sGPU, 1);

    /* check results */
hello committed
118 119 120 121
    gpuTest = _CheckData(tGPU1, answer1, tUnitNum1, 1e-4F) &&
              _CheckData(&tUserGPU1, answer1, tUnitNum1, 1e-4F) &&
              _CheckData(tGPU2, answer2, tUnitNum2, 1e-4F) &&
              _CheckData(&tUserGPU2, answer2, tUnitNum2, 1e-4F);
huchi committed
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    /* destroy variables */
    delete s;
    delete t1;
    delete t2;
    delete sGPU;
    delete tGPU1;
    delete tGPU2;
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t1;
    delete t2;
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;

    return cpuTest;
#endif // USE_CUDA
}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/*
case 2: get the max value of the items along a dimension of the scalar tensor.
In this case,
(4) -> scalar, dim = 0
*/
bool TestReduceMax2()
{
    /* a input tensor of size (4) */
    int sOrder = 1;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 4;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a output scalar tensor */
    int tOrder = 0;
    int * tDimSize = new int[MAX_TENSOR_DIM_NUM];
    int tUnitNum = 1;

    DTYPE sData[4] = {0.0F, 5.0F, 2.0F, 3.0F};
    DTYPE answer[1] = {5.0F};

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * t = NewTensorV2(tOrder, tDimSize);
    XTensor tUser;

    /* initialize variables */
    s->SetData(sData, sUnitNum);
    t->SetZeroAll();

    /* call ReduceMax function */
    _ReduceMax(s, t, 0);
    tUser = ReduceMax(*s, 0);

    /* check results */
hello committed
189 190
    cpuTest = _CheckData(t, answer, tUnitNum, 1e-4F) &&
              _CheckData(&tUser, answer, tUnitNum, 1e-4F);
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensorV2(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
    XTensor tUserGPU;

    /* initialize variables */
    sGPU->SetData(sData, sUnitNum);
    tGPU->SetZeroAll();
    tGPU->SetZeroAll();

    /* call ReduceMax function */
    _ReduceMax(sGPU, tGPU, 0);
    tUserGPU = ReduceMax(*sGPU, 0);

    /* check results */
hello committed
211 212
    gpuTest = _CheckData(tGPU, answer, tUnitNum, 1e-4F) &&
              _CheckData(&tUserGPU, answer, tUnitNum, 1e-4F);
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

    /* destroy variables */
    delete s;
    delete t;
    delete sGPU;
    delete tGPU;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest;
#endif // USE_CUDA
}

huchi committed
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
/* other cases */
/*
TODO!!
*/

/* test for ReduceMax Function */
bool TestReduceMax()
{
    XPRINT(0, stdout, "[TEST ReduceMax] get the max value of the items along a dimension of the tensor\n");
    bool returnFlag = true, caseFlag = true;

    /* case 1 test */
    caseFlag = TestReduceMax1();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");

254 255 256 257 258 259 260
    /* case 2 test */
    caseFlag = TestReduceMax2();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 2 failed!\n");
    }
    else
hello committed
261
        XPRINT(0, stdout, ">> case 2 passed!\n");
262

huchi committed
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    /* other cases test */
    /*
    TODO!!
    */

    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
    }
    else
        XPRINT(0, stdout, ">> Failed!\n");

    XPRINT(0, stdout, "\n");

    return returnFlag;
    }

} // namespace nts(NiuTrans.Tensor)