TSpread.cpp 12.4 KB
Newer Older
huchi committed
1
/* NiuTrans.Tensor - an open-source tensor library
hello committed
2
 * Copyright (C) 2017, Natural Language Processing Lab, Northeastern University.
huchi committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 * All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * $Created by: Xu Chen (email: hello_master1954@163.com) 2018-09-25
 */

#include "../core/getandset/SetData.h"
#include "../core/movement/Spread.h"
24 25
#include "../core/utilities/CheckData.h"
#include "TSpread.h"
huchi committed
26 27 28 29 30 31 32 33 34

namespace nts { // namespace nts(NiuTrans.Tensor)

/*
case 1: test _Spread function.
spread a collection tensor to source tensor.
*/
bool TestSpread1()
{
hello committed
35
    /* a input tensor of size (4, 4, 3) */
huchi committed
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    int sOrder = 3;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 4;
    sDimSize[1] = 4;
    sDimSize[2] = 3;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];
    
    /* a data tensor of size (2, 4, 3) */
    int dataOrder = 3;
    int * dataDimSize = new int[dataOrder];
    dataDimSize[0] = 2;
    dataDimSize[1] = 4;
    dataDimSize[2] = 3;

    int dataUnitNum = 1;
    for (int i = 0; i < dataOrder; i++)
        dataUnitNum *= dataDimSize[i];
    
    int srcIndex[2] = {0, 1};
    int tgtIndex[2] = {0, 1};


    DTYPE data[2][4][3] = { { {1.0F, 1.0F, 1.0F},
                              {0.0F, 1.0F, 2.0F},
                              {1.0F, 1.0F, 1.0F},
                              {1.0F, 1.0F, 1.0F} },
                            { {1.0F, 1.0F, 1.0F},
                              {3.0F, 4.0F, 5.0F},
                              {1.0F, 1.0F, 1.0F},
                              {1.0F, 1.0F, 1.0F} } };

    DTYPE answer[4][4][3] = { { {1.0F, 1.0F, 1.0F},
                                {0.0F, 1.0F, 2.0F},
                                {1.0F, 1.0F, 1.0F},
                                {1.0F, 1.0F, 1.0F} },
                              { {1.0F, 1.0F, 1.0F},
                                {3.0F, 4.0F, 5.0F},
                                {1.0F, 1.0F, 1.0F},
                                {1.0F, 1.0F, 1.0F} },
                              { {0.0F, 0.0F, 0.0F}, 
                                {0.0F, 0.0F, 0.0F}, 
                                {0.0F, 0.0F, 0.0F} },
                              { {0.0F, 0.0F, 0.0F}, 
                                {0.0F, 0.0F, 0.0F}, 
                                {0.0F, 0.0F, 0.0F} },
    };

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
90 91
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * modify = NewTensorV2(dataOrder, dataDimSize);
huchi committed
92 93

    /* Initialize variables */
hello committed
94
    s->SetZeroAll();
huchi committed
95 96 97 98 99 100
    modify->SetData(data, dataUnitNum);

    /* call _Spread function */
    _Spread(s, modify, 0, srcIndex, 2, tgtIndex);
    
    /* check results */
hello committed
101
    cpuTest = _CheckData(s, answer, sUnitNum, 1e-4F);
huchi committed
102 103 104 105 106 107

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
108 109
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * modifyGPU = NewTensorV2(dataOrder, dataDimSize, X_FLOAT, 1.0F, 0);
huchi committed
110 111

    /* Initialize variables */
hello committed
112
    sGPU->SetZeroAll();
huchi committed
113 114 115 116 117
    modifyGPU->SetData(data, dataUnitNum);
    
    /* call _Spread function */
    _Spread(sGPU, modifyGPU, 0, srcIndex, 2, tgtIndex);
    
hello committed
118
    gpuTest = _CheckData(sGPU, answer, sUnitNum, 1e-4F);
huchi committed
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

    /* destroy variables */
    delete s;
    delete modify;
    delete sGPU;
    delete modifyGPU;
    delete[] sDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete[] sDimSize;

    return cpuTest;
#endif // USE_CUDA
}

/* 
case 2: test _SpreadForGather function 
spread a collection tensor to source tensor
*/
bool TestSpread2()
{
    /* a input tensor of size (3, 3) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 3;
    sDimSize[1] = 3;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a output tensor of size (2, 3) */
    int tOrder = 2;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 2;
    tDimSize[1] = 3;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];
        
    /* a index tensor of size (2) */
    int indexOrder = 1;
    int * indexDimSize = new int[indexOrder];
    indexDimSize[0] = 2;

    int indexUnitNum = 1;
    for (int i = 0; i < indexOrder; i++)
        indexUnitNum *= indexDimSize[i];

    DTYPE sData[3][3] = { {0.0F, 0.0F, 2.0F},
                          {2.0F, 1.0F, 3.0F},
                          {2.0F, 2.0F, 4.0F} };

    DTYPE tData[2][3] = { {0.0F, -1.0F, 2.0F},
                          {1.0F, 2.0F, 0.0F} };

    DTYPE answer[3][3] = { {0.0F, -1.0F, 4.0F},
                           {2.0F, 1.0F, 3.0F},
                           {3.0F, 4.0F, 4.0F} };

    int dim = 0;
    int indexSize = 2;
    int srcIndex[2] = {0, 2};
    int tgtIndex[2] = {0, 1};

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
192 193 194 195 196
    XTensor * s1 = NewTensorV2(sOrder, sDimSize);
    XTensor * s2 = NewTensorV2(sOrder, sDimSize);
    XTensor * t = NewTensorV2(tOrder, tDimSize);
    XTensor * sIndex = NewTensorV2(indexOrder, indexDimSize, X_INT);
    XTensor * tIndex = NewTensorV2(indexOrder, indexDimSize, X_INT);
huchi committed
197 198 199 200 201 202 203 204 205 206 207 208 209

    /* initialize variables */
    s1->SetData(sData, sUnitNum);
    s2->SetData(sData, sUnitNum);
    t->SetData(tData, tUnitNum);
    sIndex->SetData(srcIndex, indexSize);
    tIndex->SetData(tgtIndex, indexSize);

    /* call _SpreadForGather function */
    _SpreadForCopyIndexed(s1, t, dim, sIndex, tIndex, 1);
    _SpreadForGather(s2, t, sIndex);

    /* check results */
hello committed
210 211
    cpuTest = _CheckData(s1, answer, sUnitNum, 1e-4F) &&
              _CheckData(s2, answer, sUnitNum, 1e-4F);
huchi committed
212 213 214 215 216 217
    
#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
218 219 220 221 222
    XTensor * sGPU1 = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * sGPU2 = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensorV2(sOrder, tDimSize, X_FLOAT, 1.0F, 0);
    XTensor * sIndexGPU = NewTensorV2(indexOrder, indexDimSize, X_INT, 1.0F, 0);
    XTensor * tIndexGPU = NewTensorV2(indexOrder, indexDimSize, X_INT, 1.0F, 0);
huchi committed
223 224 225 226 227 228 229 230 231 232 233 234 235

    /* initialize variables */
    sGPU1->SetData(sData, sUnitNum);
    sGPU2->SetData(sData, sUnitNum);
    tGPU->SetData(tData, tUnitNum);
    sIndexGPU->SetData(srcIndex, indexSize);
    tIndexGPU->SetData(tgtIndex, indexSize);

    /* call _SpreadForGather function */
    _SpreadForCopyIndexed(sGPU1, tGPU, dim, sIndexGPU, tIndexGPU, 1);
    _SpreadForGather(sGPU2, tGPU, sIndexGPU);

    /* check results */
hello committed
236 237
    gpuTest = _CheckData(sGPU1, answer, sUnitNum, 1e-4F) &&
              _CheckData(sGPU2, answer, sUnitNum, 1e-4F);
huchi committed
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

    /* destroy variables */
    delete s1;
    delete s2;
    delete t;
    delete sIndex;
    delete tIndex;
    delete sGPU1;
    delete sGPU2;
    delete tGPU;
    delete sIndexGPU;
    delete tIndexGPU;
    delete[] sDimSize;
    delete[] tDimSize;
    delete[] indexDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s1;
    delete s2;
    delete t;
    delete sIndex;
    delete tIndex;
    delete[] sDimSize;
    delete[] tDimSize;
    delete[] indexDimSize;

    return cpuTest;
#endif // USE_CUDA
}


/* 
case 3: test _SpreadForGather and _SpreadForCopyIndexed function 
spread a collection tensor to source tensor
*/
bool TestSpread3()
{
    /* a input tensor of size (3, 3) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 3;
    sDimSize[1] = 3;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a output tensor of size (2, 3) */
    int tOrder = 2;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 3;
    tDimSize[1] = 2;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];
        
    /* a index tensor of size (2) */
    int indexOrder = 1;
    int * indexDimSize = new int[indexOrder];
    indexDimSize[0] = 2;

    int indexUnitNum = 1;
    for (int i = 0; i < indexOrder; i++)
        indexUnitNum *= indexDimSize[i];

    DTYPE sData[3][3] = { {0.0F, 0.0F, 2.0F},
                          {2.0F, 1.0F, 3.0F},
                          {2.0F, 2.0F, 4.0F} };

    DTYPE tData[3][2] = { {0.0F, -1.0F}, 
                          {2.0F, 1.0F},
                          {2.0F, 0.0F} };

    DTYPE answer[3][3] = { {-1.0F, 0.0F, 2.0F},
                           {3.0F, 1.0F, 5.0F},
                           {2.0F, 2.0F, 6.0F} };

    int dim = 1;
    int indexSize = 2;
    int srcIndex[2] = {0, 2};
    int tgtIndex[2] = {1, 0};

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
327 328 329 330 331
    XTensor * s1 = NewTensorV2(sOrder, sDimSize);
    XTensor * s2 = NewTensorV2(sOrder, sDimSize);
    XTensor * t = NewTensorV2(tOrder, tDimSize);
    XTensor * sIndex = NewTensorV2(indexOrder, indexDimSize, X_INT);
    XTensor * tIndex = NewTensorV2(indexOrder, indexDimSize, X_INT);
huchi committed
332 333 334 335 336 337 338 339 340 341 342 343 344

    /* initialize variables */
    s1->SetData(sData, sUnitNum);
    s2->SetData(sData, sUnitNum);
    t->SetData(tData, tUnitNum);
    sIndex->SetData(srcIndex, indexSize);
    tIndex->SetData(tgtIndex, indexSize);

    /* call _SpreadForGather function */
    _SpreadForCopyIndexed(s1, t, dim, sIndex, tIndex, 1);
    _SpreadForCopyIndexed(s2, t, dim, sIndex, tIndex, 1);

    /* check results */
hello committed
345 346
    cpuTest = _CheckData(s1, answer, sUnitNum, 1e-4F) &&
              _CheckData(s2, answer, sUnitNum, 1e-4F);
huchi committed
347 348 349 350 351 352
    
#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
353 354 355 356 357
    XTensor * sGPU1 = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * sGPU2 = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensorV2(sOrder, tDimSize, X_FLOAT, 1.0F, 0);
    XTensor * sIndexGPU = NewTensorV2(indexOrder, indexDimSize, X_INT, 1.0F, 0);
    XTensor * tIndexGPU = NewTensorV2(indexOrder, indexDimSize, X_INT, 1.0F, 0);
huchi committed
358 359 360 361 362 363 364 365 366 367 368 369 370

    /* initialize variables */
    sGPU1->SetData(sData, sUnitNum);
    sGPU2->SetData(sData, sUnitNum);
    tGPU->SetData(tData, tUnitNum);
    sIndexGPU->SetData(srcIndex, indexSize);
    tIndexGPU->SetData(tgtIndex, indexSize);

    /* call _SpreadForGather function */
    _SpreadForCopyIndexed(sGPU1, tGPU, dim, sIndexGPU, tIndexGPU, 1);
    _SpreadForCopyIndexed(sGPU2, tGPU, dim, sIndexGPU, tIndexGPU, 1);

    /* check results */
hello committed
371 372
    gpuTest = _CheckData(sGPU1, answer, sUnitNum, 1e-4F) &&
              _CheckData(sGPU2, answer, sUnitNum, 1e-4F);
huchi committed
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

    /* destroy variables */
    delete s1;
    delete s2;
    delete t;
    delete sIndex;
    delete tIndex;
    delete sGPU1;
    delete sGPU2;
    delete tGPU;
    delete sIndexGPU;
    delete tIndexGPU;
    delete[] sDimSize;
    delete[] tDimSize;
    delete[] indexDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s1;
    delete s2;
    delete t;
    delete sIndex;
    delete tIndex;
    delete[] sDimSize;
    delete[] tDimSize;
    delete[] indexDimSize;

    return cpuTest;
#endif // USE_CUDA
}

/* other cases */
/*
TODO!!
*/

/* test for Spread Function */
bool TestSpread()
{
    XPRINT(0, stdout, "[TEST Spread] spread a collection tensor to source tensor \n");
    bool returnFlag = true, caseFlag = true;

    /* case 1 test */
    caseFlag = TestSpread1();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");
        
    /* case 1 test */
    caseFlag = TestSpread2();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 2 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 2 passed!\n");
        
    /* case 1 test */
    caseFlag = TestSpread3();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 3 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 3 passed!\n");

    /* other cases test */
    /*
    TODO!!
    */

    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
    }
    else
        XPRINT(0, stdout, ">> Failed!\n");

    XPRINT(0, stdout, "\n");

    return returnFlag;
    }

} // namespace nts(NiuTrans.Tensor)