Sigmoid.cpp 3.08 KB
Newer Older
linye committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* NiuTrans.Tensor - an open-source tensor library
 * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. 
 * All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-25
 */

#include "../XName.h"
#include <math.h>
#include "Sigmoid.h"
#include "Sigmoid.cuh"
linye committed
26
#include "../loss/LHeader.h"
linye committed
27 28 29 30 31 32 33 34 35 36

namespace nts{ // namespace nts(NiuTrans.Tensor)

/*
sigmoid function y = 1/(1+exp(-x))
>> x - input tensor
>> y - result
*/
void _Sigmoid(const XTensor * x, XTensor * y)
{
37 38 39
    CheckNTErrors(XTensor::IsSameShaped(x, y), 
                 "The input tensor and output tensor must have the same shape!")

linye committed
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#ifdef USE_CUDA
    if(x->devID >= 0 || y->devID >= 0){
        _CudaSigmoid(x, y);
        return;
    }
#endif

    if(x->dataType == DEFAULT_DTYPE && y->dataType == DEFAULT_DTYPE){
        DTYPE * ip = (DTYPE*)x->data;
        DTYPE * op = (DTYPE*)y->data;
        int n = x->GetSize();
        for(int i = 0; i < n; i++){
            DTYPE p = ip[i];
            op[i] = (DTYPE)1.0/((DTYPE)1.0+(DTYPE)exp(-p));
        }
    }
    else
        ShowNTErrors("TODO!");
}

/*
sigmoid function y = 1/(1+exp(-x)) (return an XTensor structure) 
make a new tensor to keep the result and return it

>> x - input tensor
65
<< return - output tensor
linye committed
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
*/
XTensor Sigmoid(const XTensor &x)
{
    XTensor y(&x);
    y.SetTMPFlag();

    /* call _Sigmoid function */
    _Sigmoid(&x, &y);

    /* tensor connection */
    XLink::MakeLink(&x, NULL, &y, FUNC_SIGMOID);

    return y;
}

81
void Sigmoid(const XTensor &x, XTensor &y)
linye committed
82 83 84 85 86 87 88 89
{
    if (!y.isInit || !XTensor::IsSameShaped(&y, &x)) {
        InitTensor(&y, &x);
    }

    /* call _Sigmoid function */
    _Sigmoid(&x, &y);

90
    if (y.enableGrad) {
linye committed
91 92 93 94 95
        /* tensor connection */
        XLink::MakeLink(&x, NULL, &y, FUNC_SIGMOID);
    }
}

linye committed
96 97 98 99 100 101 102
/*
backward computation

dE/ds = dE/dy * dy/dx

sigmoid: y = 1/(1+exp(-x))

103
   and dy/dx = y * (1 - y)
linye committed
104 105 106 107 108 109

>> y - output of the function
>> x - input of the function
>> dedy - dE/dy
>> dedx - dE/dx
*/
110 111
void _SigmoidBackward(XTensor * y, XTensor * x, 
                      XTensor * dedy, XTensor * dedx)
linye committed
112 113
{
#ifdef USE_CUDA
114 115
    if(x->devID >= 0){
        _CudaSigmoidBackward(y, x, dedy, dedx);
linye committed
116 117 118
        return;
    }
#endif
119 120 121 122 123 124 125 126 127
    DTYPE * dedyp = (DTYPE*)dedy->data;
    DTYPE * dedxp = (DTYPE*)dedx->data;
    DTYPE * op = (DTYPE*)y->data;
    int size = y->unitNum;

    /* dE/dx = dE/dy * dy/dx */
    for(int i = 0; i < size; i++){
        DTYPE y = op[i];
        dedxp[i] = dedyp[i] * (DTYPE)y * ((DTYPE)1.0 - y);
linye committed
128 129 130 131
    }
}

} // namespace nts(NiuTrans.Tensor)