TReduceMax.cpp 6.85 KB
Newer Older
xiaotong committed
1
/* NiuTrans.Tensor - an open-source tensor library
liyinqiao committed
2
* Copyright (C) 2017, Natural Language Processing Lab, Northeastern University.
xiaotong committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
liyinqiao committed
19
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-06-30
xiaotong committed
20 21
*/

liyinqiao committed
22
#include "../core/utilities/CheckData.h"
liyinqiao committed
23
#include "TReduceMax.h"
xiaotong committed
24

liyinqiao committed
25
namespace nts { // namespace nts(NiuTrans.Tensor)
liyinqiao committed
26 27 28 29

/* 
case 1: get the max value of the items along a dimension of the tensor. 
In this case,
liyinqiao committed
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
(2, 4) -> (4), dim = 0
(2, 4) -> (2), dim = 1
*/
bool TestReduceMax1()
{
    /* a input tensor of size (2, 4) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 2;
    sDimSize[1] = 4;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a output tensor of size (4) */
    int tOrder1 = 1;
    int * tDimSize1 = new int[tOrder1];
    tDimSize1[0] = 4;

    int tUnitNum1 = 1;
    for (int i = 0; i < tOrder1; i++)
        tUnitNum1 *= tDimSize1[i];

    /* a output tensor of size (2) */
    int tOrder2 = 1;
    int * tDimSize2 = new int[tOrder2];
    tDimSize2[0] = 2;

    int tUnitNum2 = 1;
    for (int i = 0; i < tOrder2; i++)
        tUnitNum2 *= tDimSize2[i];

liyinqiao committed
63 64 65 66
    DTYPE sData[2][4] = { {0.0F, 5.0F, 2.0F, 3.0F},
                          {4.0F, 1.0F, 6.0F, 7.0F} };
    DTYPE answer1[4] = {4.0F, 5.0F, 6.0F, 7.0F};
    DTYPE answer2[2] = {5.0F, 7.0F};
liyinqiao committed
67 68 69 70 71

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
liyinqiao committed
72 73 74
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * t1 = NewTensorV2(tOrder1, tDimSize1);
    XTensor * t2 = NewTensorV2(tOrder2, tDimSize2);
75 76
    XTensor tUser1;
    XTensor tUser2;
liyinqiao committed
77 78 79 80 81 82 83

    /* initialize variables */
    s->SetData(sData, sUnitNum);
    t1->SetZeroAll();
    t2->SetZeroAll();

    /* call ReduceMax function */
84 85
    _ReduceMax(s, t1, 0);
    _ReduceMax(s, t2, 1);
86 87
    tUser1 = ReduceMax(*s, 0);
    tUser2 = ReduceMax(*s, 1);
liyinqiao committed
88 89

    /* check results */
liyinqiao committed
90 91 92 93
    cpuTest = _CheckData(t1, answer1, tUnitNum1, 1e-4F) &&
              _CheckData(&tUser1, answer1, tUnitNum1, 1e-4F) &&
              _CheckData(t2, answer2, tUnitNum2, 1e-4F) &&
              _CheckData(&tUser2, answer2, tUnitNum2, 1e-4F);
xiaotong committed
94 95

#ifdef USE_CUDA
liyinqiao committed
96 97 98 99
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
liyinqiao committed
100 101 102
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU1 = NewTensorV2(tOrder1, tDimSize1, X_FLOAT, 1.0F, 0);
    XTensor * tGPU2 = NewTensorV2(tOrder2, tDimSize2, X_FLOAT, 1.0F, 0);
103 104
    XTensor tUserGPU1;
    XTensor tUserGPU2;
liyinqiao committed
105 106 107 108 109 110 111

    /* initialize variables */
    sGPU->SetData(sData, sUnitNum);
    tGPU1->SetZeroAll();
    tGPU2->SetZeroAll();

    /* call ReduceMax function */
112 113
    _ReduceMax(sGPU, tGPU1, 0);
    _ReduceMax(sGPU, tGPU2, 1);
114 115
    tUserGPU1 = ReduceMax(*sGPU, 0);
    tUserGPU2 = ReduceMax(*sGPU, 1);
liyinqiao committed
116 117

    /* check results */
liyinqiao committed
118 119 120 121
    gpuTest = _CheckData(tGPU1, answer1, tUnitNum1, 1e-4F) &&
              _CheckData(&tUserGPU1, answer1, tUnitNum1, 1e-4F) &&
              _CheckData(tGPU2, answer2, tUnitNum2, 1e-4F) &&
              _CheckData(&tUserGPU2, answer2, tUnitNum2, 1e-4F);
liyinqiao committed
122 123 124 125 126 127 128 129 130 131 132 133 134

    /* destroy variables */
    delete s;
    delete t1;
    delete t2;
    delete sGPU;
    delete tGPU1;
    delete tGPU2;
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;

    return cpuTest && gpuTest;
xiaotong committed
135
#else
liyinqiao committed
136 137 138 139 140 141 142 143 144
    /* destroy variables */
    delete s;
    delete t1;
    delete t2;
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;

    return cpuTest;
xiaotong committed
145
#endif // USE_CUDA
liyinqiao committed
146
}
xiaotong committed
147

liyinqiao committed
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
/*
case 2: get the max value of the items along a dimension of the scalar tensor.
In this case,
(4) -> scalar, dim = 0
*/
bool TestReduceMax2()
{
    /* a input tensor of size (4) */
    int sOrder = 1;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 4;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a output scalar tensor */
    int tOrder = 0;
    int * tDimSize = new int[MAX_TENSOR_DIM_NUM];
    int tUnitNum = 1;

    DTYPE sData[4] = {0.0F, 5.0F, 2.0F, 3.0F};
    DTYPE answer[1] = {5.0F};

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * t = NewTensorV2(tOrder, tDimSize);
    XTensor tUser;

    /* initialize variables */
    s->SetData(sData, sUnitNum);
    t->SetZeroAll();

    /* call ReduceMax function */
    _ReduceMax(s, t, 0);
    tUser = ReduceMax(*s, 0);

    /* check results */
    cpuTest = _CheckData(t, answer, tUnitNum, 1e-4F) &&
              _CheckData(&tUser, answer, tUnitNum, 1e-4F);

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensorV2(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
    XTensor tUserGPU;

    /* initialize variables */
    sGPU->SetData(sData, sUnitNum);
    tGPU->SetZeroAll();
    tGPU->SetZeroAll();

    /* call ReduceMax function */
    _ReduceMax(sGPU, tGPU, 0);
    tUserGPU = ReduceMax(*sGPU, 0);

    /* check results */
    gpuTest = _CheckData(tGPU, answer, tUnitNum, 1e-4F) &&
              _CheckData(&tUserGPU, answer, tUnitNum, 1e-4F);

    /* destroy variables */
    delete s;
    delete t;
    delete sGPU;
    delete tGPU;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest;
#endif // USE_CUDA
}

liyinqiao committed
234 235 236 237
/* other cases */
/*
TODO!!
*/
xiaotong committed
238

liyinqiao committed
239 240 241 242 243 244 245 246 247 248 249
/* test for ReduceMax Function */
bool TestReduceMax()
{
    XPRINT(0, stdout, "[TEST ReduceMax] get the max value of the items along a dimension of the tensor\n");
    bool returnFlag = true, caseFlag = true;

    /* case 1 test */
    caseFlag = TestReduceMax1();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
xiaotong committed
250
    }
liyinqiao committed
251 252
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");
xiaotong committed
253

liyinqiao committed
254 255 256 257 258 259 260 261 262
    /* case 2 test */
    caseFlag = TestReduceMax2();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 2 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 2 passed!\n");

liyinqiao committed
263
    /* other cases test */
xiaotong committed
264 265 266 267
    /*
    TODO!!
    */

liyinqiao committed
268 269 270 271 272
    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
    }
    else
        XPRINT(0, stdout, ">> Failed!\n");
xiaotong committed
273

liyinqiao committed
274
    XPRINT(0, stdout, "\n");
xiaotong committed
275

liyinqiao committed
276
    return returnFlag;
xiaotong committed
277 278
    }

liyinqiao committed
279
} // namespace nts(NiuTrans.Tensor)