TNormalize.cpp 6.59 KB
Newer Older
xiaotong committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: Lin Ye (email: linye2015@outlook.com) 2018-06-20
*/

张裕浩 committed
22
#include "../core/utilities/CheckData.h"
liyinqiao committed
23
#include "TNormalize.h"
xiaotong committed
24 25

namespace nts { // namespace nts(NiuTrans.Tensor)
liyinqiao committed
26 27 28 29 30 31

/*
case 1: normalized the data with normal distribution 
For an input x, y = a * (x-mean)/sqrt(variance+\epsilon) + b.
where a and b are the scalar and bias respectively, 
and \epsilon is the adjustment parameter.
xiaotong committed
32 33 34
*/
bool TestNormalize1()
{
张裕浩 committed
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    /* a source tensor of size (2, 3) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 2;
    sDimSize[1] = 3;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a target tensor of size (2, 3) */
    int tOrder = 2;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 2;
    tDimSize[1] = 3;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];

    /* a mean tensor of size (3) */
    int meanOrder = 1;
    int * meanDimSize = new int[meanOrder];
    meanDimSize[0] = 3;

    int meanUnitNum = 1;
    for (int i = 0; i < meanOrder; i++)
        meanUnitNum *= meanDimSize[i];

    /* a variance tensor of size (3) */
    int varOrder = 1;
    int * varDimSize = new int[varOrder];
    varDimSize[0] = 3;

    int varUnitNum = 1;
    for (int i = 0; i < varOrder; i++)
        varUnitNum *= varDimSize[i];

    /* a scalar tensor of size (2, 3) */
    int aOrder = 2;
    int * aDimSize = new int[aOrder];
    aDimSize[0] = 2;
    aDimSize[1] = 3;

    int aUnitNum = 1;
    for (int i = 0; i < aOrder; i++)
        aUnitNum *= aDimSize[i];

    /* a bias tensor of size (2, 3) */
    int bOrder = 2;
    int * bDimSize = new int[bOrder];
    bDimSize[0] = 2;
    bDimSize[1] = 3;

    int bUnitNum = 1;
    for (int i = 0; i < bOrder; i++)
        bUnitNum *= bDimSize[i];

    DTYPE sData[2][3] = { {1.0F, 2.0F, 3.0F},
                          {1.5F, 2.5F, 3.5F} };
    DTYPE meanData[3] = {1.0F, 1.5F, 2.0F};
    DTYPE varData[3] = {1.0F, 1.0F, 4.0F};
liyinqiao committed
97
    DTYPE aData[2][3] = { {1.0F, 1.0F, 1.0F},
张裕浩 committed
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
                          {1.0F, 1.0F, 1.0F} };
    DTYPE answer[2][3] = { {0.0F, 0.5F, 0.5F},
                           {0.5F, 1.0F, 0.75F} };

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s = NewTensor(sOrder, sDimSize);
    XTensor * t = NewTensor(tOrder, tDimSize);
    XTensor * mean = NewTensor(meanOrder, meanDimSize);
    XTensor * var = NewTensor(varOrder, varDimSize);
    XTensor * a = NewTensor(aOrder, aDimSize);
    XTensor * b = NewTensor(bOrder, bDimSize);
    XTensor * tMe = NewTensor(sOrder, sDimSize);
113
    XTensor tUser;
xiaotong committed
114

张裕浩 committed
115 116 117 118 119 120 121 122 123 124 125 126
    /* initialize variables */
    s->SetData(sData, sUnitNum);
    tMe->SetData(sData, sUnitNum);
    mean->SetData(meanData, meanUnitNum);
    var->SetData(varData, varUnitNum);
    a->SetData(aData, aUnitNum);
    b->SetZeroAll();
    t->SetZeroAll();

    /* call normalize function */
    _Normalize(s, t, 0, mean, var, a, b, 0.0F);
    _NormalizeMe(tMe, 0, mean, var, a, b, 0.0F);
127
    tUser = Normalize(*s, 0, *mean, *var, *a, *b, 0.0F);
liyinqiao committed
128
    
张裕浩 committed
129 130 131
    /* check results */
    cpuTest = _CheckData(t, answer, tUnitNum, 1e-4F)
        && _CheckData(tMe, answer, tUnitNum, 1e-4F) && _CheckData(&tUser, answer, tUnitNum, 1e-4F);
xiaotong committed
132 133

#ifdef USE_CUDA
张裕浩 committed
134 135 136 137 138 139 140 141 142 143 144
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
    XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * meanGPU = NewTensor(meanOrder, meanDimSize, X_FLOAT, 1.0F, 0);
    XTensor * varGPU = NewTensor(varOrder, varDimSize, X_FLOAT, 1.0F, 0);
    XTensor * aGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
    XTensor * bGPU = NewTensor(bOrder, bDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tMeGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
145
    XTensor tUserGPU;
xiaotong committed
146

张裕浩 committed
147 148 149 150 151 152 153 154 155 156 157 158
    /* initialize variables */
    sGPU->SetData(sData, sUnitNum);
    tMeGPU->SetData(sData, sUnitNum);
    meanGPU->SetData(meanData, meanUnitNum);
    varGPU->SetData(varData, varUnitNum);
    aGPU->SetData(aData, aUnitNum);
    bGPU->SetZeroAll();
    tGPU->SetZeroAll();

    /* call Normalize function */
    _Normalize(sGPU, tGPU, 0, meanGPU, varGPU, aGPU, bGPU, 0.0F);
    _NormalizeMe(tMeGPU, 0, meanGPU, varGPU, aGPU, bGPU, 0.0F);
159
    tUserGPU = Normalize(*sGPU, 0, *meanGPU, *varGPU, *aGPU, *bGPU, 0.0F);
xiaotong committed
160

张裕浩 committed
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    /* check results */
    gpuTest = _CheckData(tGPU, answer, tUnitNum, 1e-4F)
        && _CheckData(tMeGPU, answer, tUnitNum, 1e-4F) && _CheckData(&tUserGPU, answer, tUnitNum, 1e-4F);

    /* destroy variables */
    delete s;
    delete tMe;
    delete t;
    delete mean;
    delete var;
    delete a;
    delete b;
    delete sGPU;
    delete tMeGPU;
    delete tGPU;
    delete meanGPU;
    delete varGPU;
    delete aGPU;
    delete bGPU;
    delete[] sDimSize;
    delete[] tDimSize;
    delete[] meanDimSize;
    delete[] varDimSize;
    delete[] aDimSize;
    delete[] bDimSize;

    return cpuTest && gpuTest;
xiaotong committed
188
#else
张裕浩 committed
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    /* destroy variables */
    delete s;
    delete tMe;
    delete t;
    delete mean;
    delete var;
    delete a;
    delete b;
    delete[] sDimSize;
    delete[] tDimSize;
    delete[] meanDimSize;
    delete[] varDimSize;
    delete[] aDimSize;
    delete[] bDimSize;

    return cpuTest;
xiaotong committed
205 206 207 208 209 210 211 212 213 214 215
#endif // USE_CUDA
}

/* other cases */
/*
TODO!!
*/

/* test for Normalize Function */
bool TestNormalize()
{
张裕浩 committed
216 217
    XPRINT(0, stdout, "[TEST NORMALIZE] normalized the data with normal distribution \n");
    bool returnFlag = true, caseFlag = true;
xiaotong committed
218

张裕浩 committed
219 220
    /* case 1 test */
    caseFlag = TestNormalize1();
xiaotong committed
221

张裕浩 committed
222 223 224 225 226 227
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");
xiaotong committed
228

张裕浩 committed
229 230 231 232
    /* other cases test */
    /*
    TODO!!
    */
xiaotong committed
233

张裕浩 committed
234 235 236 237 238
    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
    }
    else
        XPRINT(0, stdout, ">> Failed!\n");
xiaotong committed
239

张裕浩 committed
240
    XPRINT(0, stdout, "\n");
xiaotong committed
241

张裕浩 committed
242
    return returnFlag;
xiaotong committed
243 244 245
}

} // namespace nts(NiuTrans.Tensor)