Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
8
Issues
8
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
NiuTrans.Tensor
Commits
32e87681
Commit
32e87681
authored
Mar 07, 2020
by
liyinqiao
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Support sorted TopK function.
Add a new parameter isSorted in TopK function to sort the items in the top-k pool.
parent
48bdcb49
隐藏空白字符变更
内嵌
并排
正在显示
4 个修改的文件
包含
34 行增加
和
13 行删除
+34
-13
source/tensor/core/sort/TopK.cpp
+6
-4
source/tensor/core/sort/TopK.cu
+25
-6
source/tensor/core/sort/TopK.cuh
+1
-1
source/tensor/core/sort/TopK.h
+2
-2
没有找到文件。
source/tensor/core/sort/TopK.cpp
查看文件 @
32e87681
...
@@ -35,8 +35,9 @@ get the top-k items along a given dimension
...
@@ -35,8 +35,9 @@ get the top-k items along a given dimension
>> index - index of the top-k items
>> index - index of the top-k items
>> dim - the dimension along which the sorting is performed
>> dim - the dimension along which the sorting is performed
>> k - how many items returned after sorting
>> k - how many items returned after sorting
>> isSorted - indicates whether the k items are sorted
*/
*/
void
_TopK
(
const
XTensor
*
a
,
XTensor
*
b
,
XTensor
*
index
,
int
dim
,
int
k
)
void
_TopK
(
const
XTensor
*
a
,
XTensor
*
b
,
XTensor
*
index
,
int
dim
,
int
k
,
bool
isSorted
)
{
{
dim
=
MODX
(
dim
,
a
->
order
);
dim
=
MODX
(
dim
,
a
->
order
);
...
@@ -58,7 +59,7 @@ void _TopK(const XTensor * a, XTensor * b, XTensor * index, int dim, int k)
...
@@ -58,7 +59,7 @@ void _TopK(const XTensor * a, XTensor * b, XTensor * index, int dim, int k)
if
(
a
->
devID
>=
0
||
b
->
devID
>=
0
)
{
if
(
a
->
devID
>=
0
||
b
->
devID
>=
0
)
{
#ifdef USE_CUDA
#ifdef USE_CUDA
_CudaTopK
(
a
,
b
,
index
,
dim
,
k
);
_CudaTopK
(
a
,
b
,
index
,
dim
,
k
,
isSorted
);
#else
#else
ShowNTErrors
(
"Plesae specify USE_CUDA and recompile the code!"
);
ShowNTErrors
(
"Plesae specify USE_CUDA and recompile the code!"
);
#endif
#endif
...
@@ -116,15 +117,16 @@ get the top-k items along a given dimension
...
@@ -116,15 +117,16 @@ get the top-k items along a given dimension
>> index - index of the top-k items
>> index - index of the top-k items
>> dim - the dimension along which the sorting is performed
>> dim - the dimension along which the sorting is performed
>> k - how many items returned after sorting
>> k - how many items returned after sorting
>> isSorted - indicates whether the k items are sorted
*/
*/
void
TopK
(
XTensor
&
a
,
XTensor
&
b
,
XTensor
&
index
,
int
dim
,
int
k
)
void
TopK
(
XTensor
&
a
,
XTensor
&
b
,
XTensor
&
index
,
int
dim
,
int
k
,
bool
isSorted
)
{
{
dim
=
MODX
(
dim
,
a
.
order
);
dim
=
MODX
(
dim
,
a
.
order
);
if
(
a
.
dimSize
[
dim
]
<=
k
)
if
(
a
.
dimSize
[
dim
]
<=
k
)
_Sort
(
&
a
,
&
b
,
&
index
,
dim
);
_Sort
(
&
a
,
&
b
,
&
index
,
dim
);
else
else
_TopK
(
&
a
,
&
b
,
&
index
,
dim
,
k
);
_TopK
(
&
a
,
&
b
,
&
index
,
dim
,
k
,
isSorted
);
/* tensor connection */
/* tensor connection */
//TensorList list(2);
//TensorList list(2);
...
...
source/tensor/core/sort/TopK.cu
查看文件 @
32e87681
...
@@ -374,9 +374,10 @@ get the top-k items
...
@@ -374,9 +374,10 @@ get the top-k items
>> minValue - min value of an item
>> minValue - min value of an item
>> output - the output data array
>> output - the output data array
>> index - the output index array
>> index - the output index array
>> isSorted - indicates whether the k items are sorted
*/
*/
template<class T> __global__
template<class T> __global__
void KernelTopK3(T * input, int stride, int strideNum, int blockNum, int k, T minValue, T * output, int * index)
void KernelTopK3(T * input, int stride, int strideNum, int blockNum, int k, T minValue, T * output, int * index
, bool isSorted
)
{
{
__shared__ CudaHeapNode<T> heapData[(SHARED_MEMORY_SIZE - 512 * sizeof(T)) / sizeof(CudaHeapNode<T>)];
__shared__ CudaHeapNode<T> heapData[(SHARED_MEMORY_SIZE - 512 * sizeof(T)) / sizeof(CudaHeapNode<T>)];
__shared__ T eachHeapMaxValue[512];
__shared__ T eachHeapMaxValue[512];
...
@@ -479,9 +480,22 @@ void KernelTopK3(T * input, int stride, int strideNum, int blockNum, int k, T mi
...
@@ -479,9 +480,22 @@ void KernelTopK3(T * input, int stride, int strideNum, int blockNum, int k, T mi
int offset = stride * k * blockIndex + offsetInBlock;
int offset = stride * k * blockIndex + offsetInBlock;
T * dOutput = output + offset;
T * dOutput = output + offset;
int * indexOutput = index + offset;
int * indexOutput = index + offset;
for (int q = 0; q < k; ++q){
if (isSorted)
dOutput[stride * q] = ansHeapData.items[q].value;
{
indexOutput[stride * q] = ansHeapData.items[q].index;
for (int q = k - 1; q >= 0; q--) {
dOutput[stride * q] = ansHeapData.items[0].value;
indexOutput[stride * q] = ansHeapData.items[0].index;
ansHeapData.items[0] = ansHeapData.items[ansHeapData.count - 1];
ansHeapData.count--;
ansHeapData.Down(0);
}
}
else
{
for (int q = 0; q < k; ++q) {
dOutput[stride * q] = ansHeapData.items[q].value;
indexOutput[stride * q] = ansHeapData.items[q].index;
}
}
}
}
}
}
}
...
@@ -803,8 +817,9 @@ get the top-k items along a given dimension
...
@@ -803,8 +817,9 @@ get the top-k items along a given dimension
>> index - index of the top-k items
>> index - index of the top-k items
>> dim - the dimension along which the sorting is performed
>> dim - the dimension along which the sorting is performed
>> k - how many items returned after sorting
>> k - how many items returned after sorting
>> isSorted - indicates whether the k items are sorted
*/
*/
void _CudaTopK(const XTensor * a, XTensor * b, XTensor * index, int dim, int k)
void _CudaTopK(const XTensor * a, XTensor * b, XTensor * index, int dim, int k
, bool isSorted
)
{
{
CheckNTErrors((a->unitSize == b->unitSize), "Unmatched input tensors!");
CheckNTErrors((a->unitSize == b->unitSize), "Unmatched input tensors!");
CheckNTErrors((a->order == b->order), "Unmatched input tensors!");
CheckNTErrors((a->order == b->order), "Unmatched input tensors!");
...
@@ -846,7 +861,7 @@ void _CudaTopK(const XTensor * a, XTensor * b, XTensor * index, int dim, int k)
...
@@ -846,7 +861,7 @@ void _CudaTopK(const XTensor * a, XTensor * b, XTensor * index, int dim, int k)
if (a->dataType == DEFAULT_DTYPE) {
if (a->dataType == DEFAULT_DTYPE) {
KernelTopK3<DTYPE> <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >>>
KernelTopK3<DTYPE> <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >>>
((DTYPE*)a->data, stride, strideNumA, blockNum, k, DTYPE_MIN,
((DTYPE*)a->data, stride, strideNumA, blockNum, k, DTYPE_MIN,
(DTYPE*)b->data, (int*)index->data);
(DTYPE*)b->data, (int*)index->data
, isSorted
);
}
}
else {
else {
ShowNTErrors("TODO!");
ShowNTErrors("TODO!");
...
@@ -882,6 +897,10 @@ void _CudaTopK(const XTensor * a, XTensor * b, XTensor * index, int dim, int k)
...
@@ -882,6 +897,10 @@ void _CudaTopK(const XTensor * a, XTensor * b, XTensor * index, int dim, int k)
KernelTopKRadixSelect<DTYPE> <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >>> (goutput, stride, strideNumA, blockNum, k, DTYPE_MIN, (DTYPE *)b->data, (int *)index->data, stride * strideNumA * blockNum);
KernelTopKRadixSelect<DTYPE> <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >>> (goutput, stride, strideNumA, blockNum, k, DTYPE_MIN, (DTYPE *)b->data, (int *)index->data, stride * strideNumA * blockNum);
deconvert2floatV2 <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >>> ((unsigned int *)a->data, (float *)goutput, stride, strideNumA, blockNum, strideNumA*blockNum*stride);
deconvert2floatV2 <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >>> ((unsigned int *)a->data, (float *)goutput, stride, strideNumA, blockNum, strideNumA*blockNum*stride);
if (isSorted)
{
ShowNTErrors("TODO!");
}
}
}
}
}
...
...
source/tensor/core/sort/TopK.cuh
查看文件 @
32e87681
...
@@ -29,7 +29,7 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
...
@@ -29,7 +29,7 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
#ifdef USE_CUDA
#ifdef USE_CUDA
/* get the top-k items along a given dimension */
/* get the top-k items along a given dimension */
void _CudaTopK(const XTensor * a, XTensor * b, XTensor * index, int dim, int k);
void _CudaTopK(const XTensor * a, XTensor * b, XTensor * index, int dim, int k
, bool isSorted
);
#endif // USE_CUDA
#endif // USE_CUDA
...
...
source/tensor/core/sort/TopK.h
查看文件 @
32e87681
...
@@ -27,10 +27,10 @@
...
@@ -27,10 +27,10 @@
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
/* get the top-k items along a given dimension */
/* get the top-k items along a given dimension */
void
_TopK
(
const
XTensor
*
a
,
XTensor
*
b
,
XTensor
*
index
,
int
dim
,
int
k
);
void
_TopK
(
const
XTensor
*
a
,
XTensor
*
b
,
XTensor
*
index
,
int
dim
,
int
k
,
bool
isSorted
=
false
);
/* get the top-k items along a given dimension */
/* get the top-k items along a given dimension */
void
TopK
(
XTensor
&
a
,
XTensor
&
b
,
XTensor
&
index
,
int
dim
,
int
k
);
void
TopK
(
XTensor
&
a
,
XTensor
&
b
,
XTensor
&
index
,
int
dim
,
int
k
,
bool
isSorted
=
false
);
}
// namespace nts(NiuTrans.Tensor)
}
// namespace nts(NiuTrans.Tensor)
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论