Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
8
Issues
8
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
NiuTrans.Tensor
Commits
4c7d8dde
Commit
4c7d8dde
authored
Mar 31, 2021
by
xiaotong
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
updates
parent
ecc8c6ed
隐藏空白字符变更
内嵌
并排
正在显示
8 个修改的文件
包含
225 行增加
和
114 行删除
+225
-114
source/train/XLeader.cpp
+2
-0
source/train/XLeaderAllReduce.cpp
+78
-52
source/train/XLeaderAllReduce.h
+9
-3
source/train/XLeaderPS.cpp
+47
-53
source/train/XOptimizer.cpp
+26
-0
source/train/XOptimizer.h
+9
-2
source/train/optimizer/Adam.cpp
+47
-2
source/train/optimizer/Adam.h
+7
-2
没有找到文件。
source/train/XLeader.cpp
查看文件 @
4c7d8dde
...
@@ -393,6 +393,8 @@ int XLeader::CountModels()
...
@@ -393,6 +393,8 @@ int XLeader::CountModels()
ShowNTErrors
(
"TODO: support a new XWorker type!"
);
ShowNTErrors
(
"TODO: support a new XWorker type!"
);
}
}
}
}
CheckNTErrors
(
modelCount
==
jworkers
.
count
,
"We assume that a worker just has one model!"
);
return
modelCount
;
return
modelCount
;
}
}
...
...
source/train/XLeaderAllReduce.cpp
查看文件 @
4c7d8dde
...
@@ -43,22 +43,44 @@ XLeaderAllReduce::XLeaderAllReduce()
...
@@ -43,22 +43,44 @@ XLeaderAllReduce::XLeaderAllReduce()
/* deconstructor */
/* deconstructor */
XLeaderAllReduce
::~
XLeaderAllReduce
()
XLeaderAllReduce
::~
XLeaderAllReduce
()
{
{
Clear
();
}
/* clear */
void
XLeaderAllReduce
::
Clear
()
{
for
(
int
i
=
1
;
i
<
optimizers
.
count
;
i
++
){
XOptimizer
*
opt
=
(
XOptimizer
*
)
optimizers
[
i
];
delete
opt
;
}
optimizers
.
Clear
();
}
}
/*
/*
create workers and other stuff
create workers and other stuff
>> config - configuration
>> config - configuration
>> model - the model that we run
>> model - the model that we run
>> optimizer - the optimizer
>> devIDs - device ids of the workers (the first id is for server)
>> devIDs - device ids of the workers (the first id is for server)
>> jobWorkerNum - number of job workers
>> jobWorkerNum - number of job workers
*/
*/
void
XLeaderAllReduce
::
MakeAll
(
XConfig
*
config
,
XModel
*
model
,
const
int
*
devIDs
,
const
int
jobWorkerNum
)
void
XLeaderAllReduce
::
MakeAll
(
XConfig
*
config
,
XModel
*
model
,
XOptimizer
*
optimizer
,
const
int
*
devIDs
,
const
int
jobWorkerNum
)
{
{
Clear
();
Init
();
Init
();
AddJobWorker
(
model
,
jobWorkerNum
,
devIDs
);
AddJobWorker
(
model
,
jobWorkerNum
,
devIDs
);
AddCollectWorker
();
AddCollectWorker
();
AddUpdateWorker
();
AddAuxiliaryWorker
(
CountModels
());
/* Model updaters. One updater for each model. */
AddUpdateWorker
(
jobWorkerNum
);
/* Optimizers of updating models. One optimizer for each model. */
optimizers
.
Add
(
optimizer
);
for
(
int
i
=
1
;
i
<
jobWorkerNum
;
i
++
){
XOptimizer
*
opt
=
optimizer
->
Clone
(
devIDs
[
i
]);
optimizers
.
Add
(
opt
);
}
XLeader
::
MakeAll
(
config
,
model
);
XLeader
::
MakeAll
(
config
,
model
);
}
}
...
@@ -193,8 +215,10 @@ update the model in a standard server-worker manner
...
@@ -193,8 +215,10 @@ update the model in a standard server-worker manner
*/
*/
void
XLeaderAllReduce
::
RunUpdate
(
XConfig
*
config
,
XOptimizer
*
optimizer
,
const
int
*
active
)
void
XLeaderAllReduce
::
RunUpdate
(
XConfig
*
config
,
XOptimizer
*
optimizer
,
const
int
*
active
)
{
{
XWorkerCollect
*
collecter
=
(
XWorkerCollect
*
)
cworkers
.
GetItem
(
0
);
XWorkerCollect
*
collecter
=
(
XWorkerCollect
*
)
cworkers
.
GetItem
(
0
);
XWorkerUpdate
*
updaterPrime
=
(
XWorkerUpdate
*
)
uworkers
.
GetItem
(
0
);
CheckNTErrors
(
modelNum
==
jworkers
.
count
,
"We assume that a worker has one model only!"
);
CheckNTErrors
(
uworkers
.
count
>=
modelNum
,
"No enough updaters!"
);
CheckNTErrors
(
uworkers
.
count
>=
modelNum
,
"No enough updaters!"
);
/* parameter map */
/* parameter map */
...
@@ -253,60 +277,62 @@ void XLeaderAllReduce::RunUpdate(XConfig* config, XOptimizer* optimizer, const i
...
@@ -253,60 +277,62 @@ void XLeaderAllReduce::RunUpdate(XConfig* config, XOptimizer* optimizer, const i
paramServer
.
grad
=
paramServer
.
tensor
->
grad
;
paramServer
.
grad
=
paramServer
.
tensor
->
grad
;
/* check if all the models (or part of them) are ready */
/* check if all the models (or part of them) are ready */
for
(
int
n
=
0
,
i
=
0
;
n
<
jworkers
.
count
;
n
++
)
{
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
n
];
for
(
int
m
=
0
;
m
<
worker
->
GetModelNum
();
m
++
,
i
++
)
{
/* skip the inactive model */
if
(
modelFlag
[
i
]
==
0
)
continue
;
/* skip the inactive model */
XTensorKeeper
&
paramWorker
=
paramMap
[
j
][
i
];
if
(
modelFlag
[
i
]
==
0
)
continue
;
XTensorKeeper
&
paramWorker
=
paramMap
[
j
][
i
];
/* isGradFinished is true only if the model finishes the computation
(in another thread) */
if
(
paramWorker
.
flag
==
PARAM_STATE_NOT_READY
&&
paramWorker
.
tensor
->
isGradFinished
)
{
/* isGradFinished is true only if the model finishes the computation
/* get the gradient */
//paramWorker.grad = paramWorker.tensor->grad;
/* data transmit */
//collecter->AddJobCollectDataP2P(NULL, paramWorker.grad, paramServer.grad);
//collecter->AddJobEnqueueFinished();
/* We keep the worker parameter in a list. It would be used when we broadcast
the updated paramter to the workers, that is, this is a list of worker
parameters. */
paramList
[
j
].
Add
(
&
paramWorker
);
/* reset the flag */
paramWorker
.
flag
=
PARAM_STATE_COLLECTED
;
finished
++
;
finishedCount
[
j
]
++
;
/* we call model update (in another thread) and then
broadcast the new parameters to member models
(in another thread) */
(in another thread) */
if
(
paramWorker
.
flag
==
PARAM_STATE_NOT_READY
&&
paramWorker
.
tensor
->
isGradFinished
)
{
if
(
finishedCount
[
j
]
==
activeModelCount
)
{
paramServer
.
flag
=
PARAM_STATE_COLLECTED
;
/* get the gradient */
//paramWorker.grad = paramWorker.tensor->grad;
XList
grads
;
for
(
int
k
=
0
;
k
<
modelNum
;
k
++
)
/* data transmit */
grads
.
Add
(
&
paramMap
[
j
][
i
]);
//collecter->AddJobCollectDataP2P(NULL, paramWorker.grad, paramServer.grad);
//collecter->AddJobEnqueueFinished();
/* run the all-reduce procedure to collect the gradient and share
the gradient sum across models */
/* We keep the worker parameter in a list. It would be used when we broadcast
collecter
->
AddJobCollectGradAllReduce
(
NULL
,
&
grads
);
the updated paramter to the workers, that is, this is a list of worker
parameters. */
/* update on every model. NOTE THAT we do not worry about the
paramList
[
j
].
Add
(
&
paramWorker
);
inconsistence issue of updated parameters across models because
the all-reduce method can guarantee that all the models share
/* reset the flag */
the same copy of the gradient. */
paramWorker
.
flag
=
PARAM_STATE_COLLECTED
;
for
(
int
k
=
0
;
k
<
modelNum
;
k
++
)
{
finished
++
;
XWorkerUpdate
*
updater
=
(
XWorkerUpdate
*
)
uworkers
[
k
];
finishedCount
[
j
]
++
;
updater
->
AddJobUpdate
(
NULL
,
&
paramServer
,
optimizer
);
updater
->
AddJobEnqueueFinished
();
/* we call model update (in another thread) and then
broadcast the new parameters to member models
(in another thread) */
if
(
finishedCount
[
j
]
==
activeModelCount
)
{
paramServer
.
flag
=
PARAM_STATE_COLLECTED
;
/* run the all-reduce procedure to collect the gradient and share
the gradient sum across models */
/* update on every model. NOTE THAT we do not worry about the
inconsistence issue of updated parameters across models because
the all-reduce method can guarantee that all the models share
the same copy of the gradient. */
for
(
int
k
=
0
;
k
<
modelNum
;
k
++
)
{
XWorkerUpdate
*
updater
=
(
XWorkerUpdate
*
)
uworkers
[
k
];
updater
->
AddJobUpdate
(
NULL
,
&
paramServer
,
optimizer
);
updater
->
AddJobEnqueueFinished
();
}
}
else
if
(
finishedCount
[
j
]
>
activeModelCount
)
{
ShowNTErrors
(
"Something is wrong with finishedCount!"
);
}
}
}
}
else
if
(
finishedCount
[
j
]
>
activeModelCount
)
{
ShowNTErrors
(
"Something is wrong with finishedCount!"
);
}
}
}
}
}
}
}
...
...
source/train/XLeaderAllReduce.h
查看文件 @
4c7d8dde
...
@@ -43,15 +43,22 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
...
@@ -43,15 +43,22 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
/* parameter server */
/* parameter server */
class
XLeaderAllReduce
:
public
XLeader
class
XLeaderAllReduce
:
public
XLeader
{
{
protected
:
/* optimizer for each model */
XList
optimizers
;
public
:
public
:
/* constructor */
/* constructor */
XLeaderAllReduce
();
XLeaderAllReduce
();
/* deconstructor */
/* deconstructor */
~
XLeaderAllReduce
();
~
XLeaderAllReduce
();
/* clear */
void
Clear
();
/* create workers and other stuff used in training */
/* create workers and other stuff used in training */
void
MakeAll
(
XConfig
*
config
,
XModel
*
model
,
const
int
*
devIDs
,
const
int
jobWorkerNum
);
void
MakeAll
(
XConfig
*
config
,
XModel
*
model
,
XOptimizer
*
optimizer
,
const
int
*
devIDs
,
const
int
jobWorkerNum
);
/* wait for finished states (i.e., all workers finish their jobs) */
/* wait for finished states (i.e., all workers finish their jobs) */
void
WaitForFinishing
(
const
int
*
activeJobWorkers
,
const
int
isToUpdate
);
void
WaitForFinishing
(
const
int
*
activeJobWorkers
,
const
int
isToUpdate
);
...
@@ -68,4 +75,4 @@ public:
...
@@ -68,4 +75,4 @@ public:
}
}
#endif
#endif
\ No newline at end of file
source/train/XLeaderPS.cpp
查看文件 @
4c7d8dde
...
@@ -223,6 +223,7 @@ void XLeaderPS::RunUpdate(XConfig* config, XOptimizer* optimizer, const int* act
...
@@ -223,6 +223,7 @@ void XLeaderPS::RunUpdate(XConfig* config, XOptimizer* optimizer, const int* act
jobQueues
.
Add
(
worker
->
GetJobQueue
());
jobQueues
.
Add
(
worker
->
GetJobQueue
());
}
}
CheckNTErrors
(
modelNum
==
jworkers
.
count
,
"We assume that a worker has one model only!"
);
CheckNTErrors
(
jobQueues
.
count
==
serverModel
.
paramNum
,
"Incompatiable model!"
);
CheckNTErrors
(
jobQueues
.
count
==
serverModel
.
paramNum
,
"Incompatiable model!"
);
/* jobs in queue 2 (say jobQueue): collect the (gradient) data.
/* jobs in queue 2 (say jobQueue): collect the (gradient) data.
...
@@ -253,10 +254,6 @@ void XLeaderPS::RunUpdate(XConfig* config, XOptimizer* optimizer, const int* act
...
@@ -253,10 +254,6 @@ void XLeaderPS::RunUpdate(XConfig* config, XOptimizer* optimizer, const int* act
}
}
}
}
if
(
activeModelCount
!=
jworkers
.
count
)
{
int
nnn
=
0
;
}
XList
*
paramList
=
new
XList
[
serverModel
.
paramNum
];
XList
*
paramList
=
new
XList
[
serverModel
.
paramNum
];
CheckNTErrors
(
modelCount
==
modelNum
,
"Wrong model number!"
);
CheckNTErrors
(
modelCount
==
modelNum
,
"Wrong model number!"
);
...
@@ -277,60 +274,57 @@ void XLeaderPS::RunUpdate(XConfig* config, XOptimizer* optimizer, const int* act
...
@@ -277,60 +274,57 @@ void XLeaderPS::RunUpdate(XConfig* config, XOptimizer* optimizer, const int* act
paramServer
.
grad
=
paramServer
.
tensor
->
grad
;
paramServer
.
grad
=
paramServer
.
tensor
->
grad
;
/* check if all the models (or part of them) are ready */
/* check if all the models (or part of them) are ready */
for
(
int
n
=
0
,
i
=
0
;
n
<
jworkers
.
count
;
n
++
)
{
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
n
];
for
(
int
m
=
0
;
m
<
worker
->
GetModelNum
();
m
++
,
i
++
)
{
/* skip the inactive model */
if
(
modelFlag
[
i
]
==
0
)
/* skip the inactive model */
continue
;
if
(
modelFlag
[
i
]
==
0
)
continue
;
XTensorKeeper
&
paramWorker
=
paramMap
[
j
][
i
];
/* isGradFinished is true only if the model finishes the computation
(in another thread) */
if
(
paramWorker
.
flag
==
PARAM_STATE_NOT_READY
&&
paramWorker
.
tensor
->
isGradFinished
)
{
/* get the gradient */
paramWorker
.
grad
=
paramWorker
.
tensor
->
grad
;
/* the job queue of updating parameter j */
XQueue
*
jobQueue
=
(
XQueue
*
)
jobQueues
.
GetItem
(
j
);
XTensorKeeper
&
paramWorker
=
paramMap
[
j
][
i
];
/* data transmit */
collecter
->
AddJobCollectGradP2P
(
jobQueue
,
&
paramWorker
,
&
paramServer
);
collecter
->
AddJobEnqueueFinished
(
jobQueue
);
/* isGradFinished is true only if the model finishes the computation
/* We keep the worker parameter in a list. It would be used when we broadcast
the updated paramter to the workers, that is, this is a list of worker
parameters. */
paramList
[
j
].
Add
(
&
paramWorker
);
/* reset the flag */
paramWorker
.
flag
=
PARAM_STATE_COLLECTED
;
finished
++
;
finishedCount
[
j
]
++
;
/* we call model update (in another thread) and then
broadcast the new parameters to member models
(in another thread) */
(in another thread) */
if
(
paramWorker
.
flag
==
PARAM_STATE_NOT_READY
&&
paramWorker
.
tensor
->
isGradFinished
)
{
if
(
finishedCount
[
j
]
==
activeModelCount
)
{
paramServer
.
flag
=
PARAM_STATE_COLLECTED
;
/* get the gradient */
if
(
updater
!=
NULL
)
{
paramWorker
.
grad
=
paramWorker
.
tensor
->
grad
;
/* update the parameters */
/* the job queue of updating parameter j */
updater
->
AddJobUpdate
(
jobQueue
,
&
paramServer
,
optimizer
);
XQueue
*
jobQueue
=
(
XQueue
*
)
jobQueues
.
GetItem
(
j
);
updater
->
AddJobEnqueueFinished
(
jobQueue
);
/* data transmit */
/* broadcast the new parameter to other models */
collecter
->
AddJobCollectGradP2P
(
jobQueue
,
&
paramWorker
,
&
paramServer
);
broadcaster
->
AddJobBroadcast
(
jobQueue
,
&
paramServer
,
&
paramList
[
j
]);
collecter
->
AddJobEnqueueFinished
(
jobQueue
);
broadcaster
->
AddJobEnqueueFinished
(
jobQueue
);
/* We keep the worker parameter in a list. It would be used when we broadcast
the updated paramter to the workers, that is, this is a list of worker
parameters. */
paramList
[
j
].
Add
(
&
paramWorker
);
/* reset the flag */
paramWorker
.
flag
=
PARAM_STATE_COLLECTED
;
finished
++
;
finishedCount
[
j
]
++
;
/* we call model update (in another thread) and then
broadcast the new parameters to member models
(in another thread) */
if
(
finishedCount
[
j
]
==
activeModelCount
)
{
paramServer
.
flag
=
PARAM_STATE_COLLECTED
;
if
(
updater
!=
NULL
)
{
/* update the parameters */
updater
->
AddJobUpdate
(
jobQueue
,
&
paramServer
,
optimizer
);
updater
->
AddJobEnqueueFinished
(
jobQueue
);
/* broadcast the new parameter to other models */
broadcaster
->
AddJobBroadcast
(
jobQueue
,
&
paramServer
,
&
paramList
[
j
]);
broadcaster
->
AddJobEnqueueFinished
(
jobQueue
);
}
}
else
if
(
finishedCount
[
j
]
>
activeModelCount
)
{
ShowNTErrors
(
"Something is wrong with finishedCount!"
);
}
}
}
}
else
if
(
finishedCount
[
j
]
>
activeModelCount
)
{
ShowNTErrors
(
"Something is wrong with finishedCount!"
);
}
}
}
}
}
}
}
...
...
source/train/XOptimizer.cpp
查看文件 @
4c7d8dde
...
@@ -65,6 +65,32 @@ void XOptimizer::Clear()
...
@@ -65,6 +65,32 @@ void XOptimizer::Clear()
void
XOptimizer
::
Reset
()
void
XOptimizer
::
Reset
()
{
{
}
}
/* clone the optimizer (with the data in it) */
XOptimizer
*
XOptimizer
::
Clone
(
int
devID
)
{
XOptimizer
*
opt
=
new
XOptimizer
();
Copy
(
this
,
opt
,
devID
);
return
opt
;
}
/*
copy data
>> source - where we copy the data from
>> target - where we copy the data to
>> devID - the device where place the new data
*/
void
XOptimizer
::
Copy
(
XOptimizer
*
source
,
XOptimizer
*
target
,
int
devID
)
{
CheckNTErrors
(
source
!=
NULL
,
"No input source optimizer"
);
CheckNTErrors
(
target
!=
NULL
,
"No input source optimizer"
);
target
->
nstep
=
source
->
nstep
;
target
->
nepoch
=
source
->
nepoch
;
target
->
lrate
=
source
->
lrate
;
}
void
XOptimizer
::
ShowSettings
()
void
XOptimizer
::
ShowSettings
()
{
{
...
...
source/train/XOptimizer.h
查看文件 @
4c7d8dde
...
@@ -67,6 +67,14 @@ public:
...
@@ -67,6 +67,14 @@ public:
virtual
virtual
void
Reset
();
void
Reset
();
/* clone the optimizer (with the data in it) */
virtual
XOptimizer
*
Clone
(
int
devID
);
/* copy data */
virtual
void
Copy
(
XOptimizer
*
source
,
XOptimizer
*
target
,
int
devID
);
/* show settings */
/* show settings */
virtual
virtual
void
ShowSettings
();
void
ShowSettings
();
...
@@ -88,4 +96,4 @@ public:
...
@@ -88,4 +96,4 @@ public:
}
}
#endif
#endif
\ No newline at end of file
source/train/optimizer/Adam.cpp
查看文件 @
4c7d8dde
...
@@ -92,6 +92,52 @@ void Adam::Reset()
...
@@ -92,6 +92,52 @@ void Adam::Reset()
adamBeta1T
=
1.0
F
;
adamBeta1T
=
1.0
F
;
adamBeta2T
=
1.0
F
;
adamBeta2T
=
1.0
F
;
}
}
/*
clone the optimizer (with the data in it)
>> devID - device where we place the data
*/
XOptimizer
*
Adam
::
Clone
(
int
devID
)
{
Adam
*
opt
=
new
Adam
();
Copy
(
this
,
opt
,
devID
);
return
(
XOptimizer
*
)
opt
;
}
/* copy data */
void
Adam
::
Copy
(
XOptimizer
*
source
,
XOptimizer
*
target
,
int
devID
)
{
XOptimizer
::
Copy
(
source
,
target
,
devID
);
Adam
*
s
=
(
Adam
*
)
source
;
Adam
*
t
=
(
Adam
*
)
target
;
t
->
adamBeta1
=
s
->
adamBeta1
;
t
->
adamBeta2
=
s
->
adamBeta2
;
t
->
adamDelta
=
s
->
adamDelta
;
t
->
adamBeta1T
=
s
->
adamBeta1T
;
t
->
adamBeta2T
=
s
->
adamBeta2T
;
t
->
moments
.
Clear
();
for
(
int
i
=
0
;
i
<
s
->
moments
.
count
;
i
++
){
XTensor
*
st
=
s
->
moments
[
i
];
XTensor
*
stNew
=
new
XTensor
();
InitTensorV2
(
stNew
,
st
->
order
,
st
->
dimSize
,
st
->
dataType
,
st
->
denseRatio
,
devID
);
_CopyValues
(
st
,
stNew
);
t
->
moments
.
Add
(
stNew
);
}
t
->
moments2nd
.
Clear
();
for
(
int
i
=
0
;
i
<
s
->
moments2nd
.
count
;
i
++
){
XTensor
*
st
=
s
->
moments2nd
[
i
];
XTensor
*
stNew
=
new
XTensor
();
InitTensorV2
(
stNew
,
st
->
order
,
st
->
dimSize
,
st
->
dataType
,
st
->
denseRatio
,
devID
);
_CopyValues
(
st
,
stNew
);
t
->
moments2nd
.
Add
(
stNew
);
}
}
/* show settings */
/* show settings */
void
Adam
::
ShowSettings
()
void
Adam
::
ShowSettings
()
...
@@ -149,4 +195,4 @@ void Adam::UpdateParam(XTensor * param, XTensor * grad, int pid)
...
@@ -149,4 +195,4 @@ void Adam::UpdateParam(XTensor * param, XTensor * grad, int pid)
GMems
.
GetMem
(
v
->
devID
)
->
UnlockBuf
();
GMems
.
GetMem
(
v
->
devID
)
->
UnlockBuf
();
}
}
}
}
\ No newline at end of file
source/train/optimizer/Adam.h
查看文件 @
4c7d8dde
...
@@ -66,6 +66,12 @@ public:
...
@@ -66,6 +66,12 @@ public:
/* reset the optimizer (re-start) */
/* reset the optimizer (re-start) */
void
Reset
();
void
Reset
();
/* clone the optimizer (with the data in it) */
XOptimizer
*
Clone
(
int
devID
);
/* copy data */
void
Copy
(
XOptimizer
*
source
,
XOptimizer
*
target
,
int
devID
);
/* show settings */
/* show settings */
void
ShowSettings
();
void
ShowSettings
();
...
@@ -80,4 +86,4 @@ public:
...
@@ -80,4 +86,4 @@ public:
}
}
#endif
#endif
\ No newline at end of file
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论