Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
8
Issues
8
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
NiuTrans.Tensor
Commits
5f345e87
Commit
5f345e87
authored
Mar 05, 2021
by
xiaotong
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
bug fixes
parent
e6c92495
隐藏空白字符变更
内嵌
并排
正在显示
5 个修改的文件
包含
62 行增加
和
33 行删除
+62
-33
source/train/TTrain.cpp
+24
-18
source/train/TTrain.h
+12
-0
source/train/XLeader.cpp
+19
-10
source/train/XTrainer.cpp
+7
-2
source/train/XWorkerJob.cpp
+0
-3
没有找到文件。
source/train/TTrain.cpp
查看文件 @
5f345e87
...
...
@@ -148,7 +148,6 @@ get a batch of samples
*/
bool
TTDataLoader
::
GetBatchSimple
(
XList
*
inputs
,
XList
*
golds
)
{
fprintf
(
stderr
,
"get batch 0
\n
"
);
CheckNTErrors
(
file
!=
NULL
,
"No input file specificed!"
);
CheckNTErrors
(
inputs
!=
NULL
&&
inputs
->
count
>=
1
,
"Wrong argument!"
);
CheckNTErrors
(
golds
!=
NULL
&&
golds
->
count
>=
1
,
"Wrong argument!"
);
...
...
@@ -184,16 +183,14 @@ bool TTDataLoader::GetBatchSimple(XList * inputs, XList * golds)
InitTensor2D
(
input
,
count
,
3
,
X_INT
);
InitTensor2D
(
gold
,
count
,
1
,
X_INT
);
input
->
SetData
(
input
,
count
*
3
);
gold
->
SetData
(
gold
,
count
);
input
->
SetData
(
input
Batch
,
count
*
3
);
gold
->
SetData
(
gold
Batch
,
count
);
}
delete
[]
line
;
delete
[]
inputBatch
;
delete
[]
goldBatch
;
fprintf
(
stderr
,
"get batch 1
\n
"
);
if
(
count
>
0
)
return
true
;
else
...
...
@@ -225,15 +222,17 @@ void TTModel::Init(XConfig &myConfig, int devID)
{
SetConfig
(
myConfig
);
int
vSize
=
MAX_INT_IN_TTRAIN
+
1
;
int
eSize
=
config
.
GetInt
(
"esize"
,
TT_EMBEDDING_SIZE
);
int
hSize
=
config
.
GetInt
(
"hsize"
,
TT_HIDDEN_SIZE
);
vSize
=
MAX_INT_IN_TTRAIN
+
1
;
eSize
=
config
.
GetInt
(
"esize"
,
TT_EMBEDDING_SIZE
);
hSize
=
config
.
GetInt
(
"hsize"
,
TT_HIDDEN_SIZE
);
InitTensor2D
(
&
embeddingW
,
vSize
,
eSize
,
X_FLOAT
,
devID
);
InitTensor2D
(
&
hiddenW
,
3
*
eSize
,
hSize
,
X_FLOAT
,
devID
);
InitTensor2D
(
&
outputW
,
hSize
,
vSize
,
X_FLOAT
,
devID
);
embeddingW
.
SetDataRand
(
-
0.1
F
,
0.1
F
);
hiddenW
.
SetDataRand
(
-
0.1
F
,
0.1
F
);
outputW
.
SetDataRand
(
-
0.1
F
,
0.1
F
);
}
/* create the model */
...
...
@@ -243,21 +242,17 @@ void TTModel::Forward(int devID, XTensor * input, XTensor * output)
XTensor
embeddingCat
;
XTensor
hidden
;
fprintf
(
stderr
,
"forward 0
\n
"
);
/* [e_0, e_1, e_2] = w_e * input(one-hot) */
embedding
=
Gather
(
embeddingW
,
*
input
);
/* e = merge(e_0, e_1, e_2) */
embeddingCat
=
Merge
(
embedding
,
0
,
1
);
/* h = e * w_h */
hidden
=
MMul
(
embeddingCat
,
hiddenW
);
embeddingCat
=
Merge
(
embedding
,
embedding
.
order
-
1
,
embedding
.
order
-
2
);
/*
output = Softmax(
h) */
*
output
=
Softmax
(
hidden
,
0
);
/*
h = hardtanh(e * w_
h) */
hidden
=
HardTanH
(
MMul
(
embeddingCat
,
hiddenW
)
);
fprintf
(
stderr
,
"forward 1
\n
"
);
/* output = Softmax(h * w_o) */
*
output
=
Softmax
(
MMul
(
hidden
,
outputW
),
-
1
);
}
/* clear the model */
...
...
@@ -292,15 +287,26 @@ bool TTModel::RunSimple(XList * inputs, XList * outputs, XList * golds)
XTensor
*
output
=
(
XTensor
*
)
outputs
->
GetItem
(
0
);
XTensor
*
gold
=
(
XTensor
*
)
golds
->
GetItem
(
0
);
XTensor
loss
;
XTensor
goldOneHot
;
XNet
net
;
Forward
(
devID
,
input
,
output
);
loss
=
CrossEntropy
(
output
,
gold
);
goldOneHot
=
IndexToOnehot
(
*
gold
,
vSize
,
0.0
F
);
int
*
dims
=
new
int
[
goldOneHot
.
order
];
for
(
int
i
=
0
;
i
<
goldOneHot
.
order
-
2
;
i
++
)
dims
[
i
]
=
goldOneHot
.
GetDim
(
i
);
dims
[
goldOneHot
.
order
-
2
]
=
goldOneHot
.
GetDim
(
goldOneHot
.
order
-
1
);
goldOneHot
.
Reshape
(
goldOneHot
.
order
-
1
,
dims
);
loss
=
CrossEntropy
(
output
,
goldOneHot
);
net
.
Backward
(
loss
);
delete
[]
dims
;
return
true
;
}
...
...
source/train/TTrain.h
查看文件 @
5f345e87
...
...
@@ -111,6 +111,18 @@ protected:
/* parameter matrix of the hidden layer */
XTensor
hiddenW
;
/* parameter matrix of the output layer */
XTensor
outputW
;
/* vocabulary size */
int
vSize
;
/* embedding size */
int
eSize
;
/* hidden layer size */
int
hSize
;
public
:
/* constructor */
TTModel
();
...
...
source/train/XLeader.cpp
查看文件 @
5f345e87
...
...
@@ -206,6 +206,7 @@ bool XLeader::Run(XConfig * config, DataDistributeBase * dataDistributor,
XModel
*
model
,
XOptimizer
*
optimizer
)
{
bool
isDataOK
=
true
;
int
activeJobCount
=
0
;
/* Feed the input to each worker and geneate the output.
For each worker, we define a job queue and enqueue jobs
...
...
@@ -216,20 +217,23 @@ bool XLeader::Run(XConfig * config, DataDistributeBase * dataDistributor,
XModel
*
jmodel
=
worker
->
GetModel
();
/* get a batch of samples */
bool
fetched
=
dataDistributor
->
GetBatchSimple
(
worker
->
GetInput
(),
worker
->
GetGold
());
/* job in queue 1: refresh the model */
worker
->
AddJobRefresh
(
jmodel
);
/* job in queue 1: run the model */
worker
->
AddJobNeuralNet
(
jmodel
,
worker
->
GetInput
(),
worker
->
GetOutput
(),
worker
->
GetGold
());
/* clear it */
worker
->
Clear
();
bool
fetched
=
dataDistributor
->
GetBatchSimple
(
worker
->
GetInput
(),
worker
->
GetGold
());
if
(
!
fetched
)
isDataOK
=
false
;
else
{
/* job in queue 1: refresh the model */
worker
->
AddJobRefresh
(
jmodel
);
/* job in queue 1: run the model */
worker
->
AddJobNeuralNet
(
jmodel
,
worker
->
GetInput
(),
worker
->
GetOutput
(),
worker
->
GetGold
());
activeJobCount
++
;
}
}
if
(
activeJobCount
==
0
)
return
false
;
XList
members
(
jworkers
.
count
);
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
...
...
@@ -266,6 +270,11 @@ bool XLeader::Run(XConfig * config, DataDistributeBase * dataDistributor,
WaitForFinishing
();
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
i
];
worker
->
Clear
();
}
return
isDataOK
;
}
...
...
source/train/XTrainer.cpp
查看文件 @
5f345e87
...
...
@@ -123,7 +123,10 @@ void XTrainer::Run(XConfig * config, DataDistributeBase * dataDistributor,
/* one step of udpate */
ok
=
leader
.
Run
(
config
,
dataDistributor
,
model
,
optimizer
);
if
((
step
+
1
)
%
100
==
0
)
fprintf
(
stderr
,
"epoch:%d step:%d
\n
"
,
epoch
+
1
,
step
+
1
);
if
(
step
++
>=
nstep
)
break
;
}
...
...
@@ -131,10 +134,12 @@ void XTrainer::Run(XConfig * config, DataDistributeBase * dataDistributor,
dataDistributor
->
End
();
if
(
step
>=
nstep
)
break
;
break
;
}
delete
[]
ids
;
fprintf
(
stderr
,
"epoch:%d step:%d
\n
"
,
epoch
,
step
);
}
}
/* end of the nts (NiuTrans.Tensor) namespace */
source/train/XWorkerJob.cpp
查看文件 @
5f345e87
...
...
@@ -105,7 +105,6 @@ add a new job of model refreshment
*/
bool
XWorkerJob
::
AddJobRefresh
(
XModel
*
myModel
)
{
fprintf
(
stderr
,
"refresh 0
\n
"
);
CheckNTErrors
(
myModel
!=
NULL
,
"no parameter keeper!"
);
XList
args
(
1
);
...
...
@@ -113,8 +112,6 @@ bool XWorkerJob::AddJobRefresh(XModel * myModel)
queue
.
EnqueueJob
((
void
*
)(
char
*
)
XModel
::
Refresh
,
&
args
);
fprintf
(
stderr
,
"refresh 1
\n
"
);
return
true
;
}
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论