Commit 666d51e9 by liyinqiao

Merge with Yuhao branch.

parent ddbb77b6
......@@ -26,183 +26,9 @@
*
*/
#ifdef WIN32
#include <wtypes.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include "XBLAS.h"
#include "XGlobal.h"
/* the nts (NiuTrans.Tensor) namespace */
namespace nts{
#ifdef WIN32
HINSTANCE hBLASDll;
#endif
/* single-precision floating matrix-matrix multiplication */
void (*XBLAS_SGEMM)(OPENBLAS_CONST enum CBLAS_ORDER, OPENBLAS_CONST enum CBLAS_TRANSPOSE, OPENBLAS_CONST enum CBLAS_TRANSPOSE,
OPENBLAS_CONST BLASINT, OPENBLAS_CONST BLASINT, OPENBLAS_CONST BLASINT, OPENBLAS_CONST float,
OPENBLAS_CONST float *, OPENBLAS_CONST BLASINT,
OPENBLAS_CONST float *, OPENBLAS_CONST BLASINT, OPENBLAS_CONST float,
float *, OPENBLAS_CONST BLASINT);
/* double-precision floating matrix-matrix multiplication */
void (*XBLAS_DGEMM)(OPENBLAS_CONST enum CBLAS_ORDER, OPENBLAS_CONST enum CBLAS_TRANSPOSE, OPENBLAS_CONST enum CBLAS_TRANSPOSE,
OPENBLAS_CONST BLASINT, OPENBLAS_CONST BLASINT, OPENBLAS_CONST BLASINT, OPENBLAS_CONST double,
OPENBLAS_CONST double *, OPENBLAS_CONST BLASINT,
OPENBLAS_CONST double *, OPENBLAS_CONST BLASINT, OPENBLAS_CONST double,
double *, OPENBLAS_CONST BLASINT);
/* single-precision floating vector-vector multiplication (rank-1) */
void (*XBLAS_SGER)(OPENBLAS_CONST enum CBLAS_ORDER, OPENBLAS_CONST BLASINT M, OPENBLAS_CONST BLASINT N, OPENBLAS_CONST float alpha,
OPENBLAS_CONST float *Y, OPENBLAS_CONST BLASINT, OPENBLAS_CONST float *, OPENBLAS_CONST BLASINT,
float *, OPENBLAS_CONST BLASINT);
/* double-precision floating vector-vector multiplication (rank-1) */
void (*XBLAS_DGER)(OPENBLAS_CONST enum CBLAS_ORDER, OPENBLAS_CONST BLASINT M, OPENBLAS_CONST BLASINT N, OPENBLAS_CONST double alpha,
OPENBLAS_CONST double *Y, OPENBLAS_CONST BLASINT, OPENBLAS_CONST double *, OPENBLAS_CONST BLASINT,
double *, OPENBLAS_CONST BLASINT);
/* set the number of threads */
void (*XBLAS_SET_THREAD_NUM)(int);
/* get the number of threads */
//int (*XBLAS_GET_THREAD_NUM)();
/* get the number of physical processors (cores).*/
int (*XBLAS_GET_CORE_NUM)();
/* get the CPU corename */
//char * (*XBLAS_GET_CORE_NAME)();
/* get the parallelization type used by OpenBLAS */
//int (*XBLAS_GET_PARALLEL_TYPE)(void);
#if defined(USE_BLAS)
/* load some stuff for BLAS */
void LoadBLAS(const char * dllFileName)
{
#ifndef CUDA_BLAS
#ifdef _WIN32
#if defined(OPENBLAS)
/* non-ascii characters are not supported yet */
wchar_t * fn = new wchar_t[strlen(dllFileName) + 1];
memset(fn, 0, sizeof(wchar_t) * (strlen(dllFileName) + 1));
for(int i = 0; i < strlen(dllFileName); i++)
fn[i] = dllFileName[i];
hBLASDll = LoadLibrary((LPCWSTR)fn);
if(!hBLASDll){
XPRINT1(0, stderr, "[LoadBLAS] Error! Cannot load dll %s!\n", dllFileName);
exit(1);
}
/* matrix-matrix multiplicatoin */
(FARPROC&)XBLAS_SGEMM = GetProcAddress(hBLASDll, "cblas_sgemm");
(FARPROC&)XBLAS_DGEMM = GetProcAddress(hBLASDll, "cblas_dgemm");
/* vector-vector multiplication */
(FARPROC&)XBLAS_SGER = GetProcAddress(hBLASDll, "cblas_sger");
(FARPROC&)XBLAS_DGER = GetProcAddress(hBLASDll, "cblas_dger");
/* multi-threading */
(FARPROC&)XBLAS_SET_THREAD_NUM = GetProcAddress(hBLASDll, "openblas_set_num_threads");
//(FARPROC&)XBLAS_SET_THREAD_NUM = GetProcAddress(hBLASDll, "goto_set_num_threads");
//(FARPROC&)XBLAS_GET_THREAD_NUM = GetProcAddress(hBLASDll, "openblas_get_num_threads");
(FARPROC&)XBLAS_GET_CORE_NUM = GetProcAddress(hBLASDll, "openblas_get_num_procs");
//(FARPROC&)XBLAS_GET_CORE_NAME = GetProcAddress(hBLASDll, "openblas_get_corename");
//(FARPROC&)XBLAS_GET_PARALLEL_TYPE = GetProcAddress(hBLASDll, "openblas_get_parallel");
delete[] fn;
#endif // defined(OPENBLAS)
#if defined(MKL)
/* non-ascii characters are not supported yet */
wchar_t * fn = new wchar_t[strlen(dllFileName) + 1];
memset(fn, 0, sizeof(wchar_t) * (strlen(dllFileName) + 1));
for(int i = 0; i < strlen(dllFileName); i++)
fn[i] = dllFileName[i];
hBLASDll = LoadLibrary((LPCWSTR)fn);
if(!hBLASDll){
XPRINT1(0, stderr, "[LoadBLAS] Error! Cannot load dll %s!\n", dllFileName);
exit(1);
}
/* matrix-matrix multiplicatoin */
(FARPROC&)XBLAS_SGEMM = GetProcAddress(hBLASDll, "cblas_sgemm");
(FARPROC&)XBLAS_DGEMM = GetProcAddress(hBLASDll, "cblas_dgemm");
/* vector-vector multiplication */
(FARPROC&)XBLAS_SGER = GetProcAddress(hBLASDll, "cblas_sger");
(FARPROC&)XBLAS_DGER = GetProcAddress(hBLASDll, "cblas_dger");
/* multi-threading */
(FARPROC&)XBLAS_SET_THREAD_NUM = GetProcAddress(hBLASDll, "MKL_Set_Num_Threads");
(FARPROC&)XBLAS_GET_CORE_NUM = GetProcAddress(hBLASDll, "MKL_Get_Max_Threads");
#endif // defined(MKL)
#else // _WIN32
XBLAS_SGEMM = &cblas_sgemm;
XBLAS_DGEMM = &cblas_dgemm;
XBLAS_SGER = &cblas_sger;
XBLAS_DGER = &cblas_dger;
#if defined(OPENBLAS)
XBLAS_SET_THREAD_NUM = &openblas_set_num_threads;
XBLAS_GET_CORE_NUM = &openblas_get_num_procs;
#endif // defined(OPENBLAS)
#if defined(MKL)
XBLAS_SET_THREAD_NUM = &mkl_set_num_threads;
XBLAS_GET_CORE_NUM = &mkl_get_max_num_threads;
#endif // defined(MKL)
#endif // _WIN32
XBLAS_SET_THREAD_NUM(1);
#endif // ndef(CUDA_BLAS)
}
/* unload the libs */
void UnloadBLAS()
{
#ifdef _WIN32
if(!FreeLibrary(hBLASDll)){
XPRINT(0, stderr, "[UnloadBLAS] Error! Cannot free the BLAS dll!\n");
exit(1);
}
#else
#endif
}
#else // undefined(USE_BLAS) || undefined(OPENBLAS)
void LoadBLAS(const char * dllFileName)
{
XPRINT(0, stderr, "[LoadBLAS] Error! No Blas lib is available. Please use OPENBLAS or MKL!\n");
exit(1);
}
void UnloadBLAS()
{
XPRINT(0, stderr, "[UnloadBLAS] Error! No Blas lib is available. Please use OPENBLAS or MKL!\n");
exit(1);
}
#endif // defined(USE_BLAS) && defined(OPENBLAS)
} /* end of the nts (NiuTrans.Tensor) namespace */
\ No newline at end of file
......@@ -34,7 +34,6 @@ namespace nts{
/* some of the code below is from OpenBLAS (https://github.com/xianyi/OpenBLAS) */
//#define OPENBLAS
#define OPENBLAS_CONST const
typedef int BLASINT;
......@@ -46,7 +45,26 @@ typedef enum CBLAS_SIDE {CblasLeft=141, CblasRight=142} CBLAS_SIDE;
#if defined(USE_BLAS)
#ifdef OPENBLAS
#define XBLAS_SGEMM cblas_sgemm
#define XBLAS_DGEMM cblas_dgemm
#define XBLAS_SGER cblas_sger
#define XBLAS_DGER cblas_dger
#define XBLAS_SAXPY cblas_saxpy
#define XBLAS_DAXPY cblas_daxpy
#define XBLAS_SET_THREAD_NUM openblas_set_num_threads
#define XBLAS_GET_CORE_NUM openblas_get_num_procs
#endif
#ifdef MKL
#define XBLAS_SGEMM cblas_sgemm
#define XBLAS_DGEMM cblas_dgemm
#define XBLAS_SGER cblas_sger
#define XBLAS_DGER cblas_dger
#define XBLAS_SAXPY cblas_saxpy
#define XBLAS_DAXPY cblas_daxpy
#define XBLAS_SET_THREAD_NUM MKL_Set_Num_Threads
#define XBLAS_GET_CORE_NUM MKL_Get_Max_Threads
#endif
/*
single/double-precision floating matrix-matrix multiplication (rank-3)
- SGEMM (ORDER, TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
......@@ -62,14 +80,14 @@ where A, B and C are matrices,
LDB(=N) specifies the size of the first dimension of B as declared in the calling (sub) program,
and LDC(=N) specifies the size of the first dimension of C as declared in the calling (sub) program.
*/
extern "C" void (*XBLAS_SGEMM)(OPENBLAS_CONST enum CBLAS_ORDER, OPENBLAS_CONST enum CBLAS_TRANSPOSE, OPENBLAS_CONST enum CBLAS_TRANSPOSE,
extern "C" void XBLAS_SGEMM(OPENBLAS_CONST enum CBLAS_ORDER, OPENBLAS_CONST enum CBLAS_TRANSPOSE, OPENBLAS_CONST enum CBLAS_TRANSPOSE,
OPENBLAS_CONST BLASINT, OPENBLAS_CONST BLASINT, OPENBLAS_CONST BLASINT, OPENBLAS_CONST float,
OPENBLAS_CONST float *, OPENBLAS_CONST BLASINT,
OPENBLAS_CONST float *, OPENBLAS_CONST BLASINT, OPENBLAS_CONST float,
float *, OPENBLAS_CONST BLASINT);
/* double-precision floating matrix-matrix multiplication */
extern "C" void (*XBLAS_DGEMM)(OPENBLAS_CONST enum CBLAS_ORDER, OPENBLAS_CONST enum CBLAS_TRANSPOSE, OPENBLAS_CONST enum CBLAS_TRANSPOSE,
extern "C" void XBLAS_DGEMM(OPENBLAS_CONST enum CBLAS_ORDER, OPENBLAS_CONST enum CBLAS_TRANSPOSE, OPENBLAS_CONST enum CBLAS_TRANSPOSE,
OPENBLAS_CONST BLASINT, OPENBLAS_CONST BLASINT, OPENBLAS_CONST BLASINT, OPENBLAS_CONST double,
OPENBLAS_CONST double *, OPENBLAS_CONST BLASINT,
OPENBLAS_CONST double *, OPENBLAS_CONST BLASINT, OPENBLAS_CONST double,
......@@ -88,24 +106,33 @@ where X and Y are vectors with m and n elements respectively,
E.g., if we are using CblasRowMajor, the leading dimension is the number of columns of A.
*/
extern "C" void (*XBLAS_SGER)(OPENBLAS_CONST enum CBLAS_ORDER, OPENBLAS_CONST BLASINT M, OPENBLAS_CONST BLASINT N, OPENBLAS_CONST float alpha,
extern "C" void XBLAS_SGER(OPENBLAS_CONST enum CBLAS_ORDER, OPENBLAS_CONST BLASINT M, OPENBLAS_CONST BLASINT N, OPENBLAS_CONST float alpha,
OPENBLAS_CONST float *Y, OPENBLAS_CONST BLASINT, OPENBLAS_CONST float *, OPENBLAS_CONST BLASINT,
float *, OPENBLAS_CONST BLASINT);
/* double-precision floating vector-vector multiplication (rank-1) */
extern "C" void (*XBLAS_DGER)(OPENBLAS_CONST enum CBLAS_ORDER, OPENBLAS_CONST BLASINT M, OPENBLAS_CONST BLASINT N, OPENBLAS_CONST double alpha,
extern "C" void XBLAS_DGER(OPENBLAS_CONST enum CBLAS_ORDER, OPENBLAS_CONST BLASINT M, OPENBLAS_CONST BLASINT N, OPENBLAS_CONST double alpha,
OPENBLAS_CONST double *Y, OPENBLAS_CONST BLASINT, OPENBLAS_CONST double *, OPENBLAS_CONST BLASINT,
double *, OPENBLAS_CONST BLASINT);
/*
some description
*/
extern "C" void XBLAS_SAXPY(OPENBLAS_CONST BLASINT n, OPENBLAS_CONST float a, OPENBLAS_CONST float *x, OPENBLAS_CONST BLASINT incx, OPENBLAS_CONST float *y, OPENBLAS_CONST BLASINT incy);
/* double-precision floating sumMe function */
extern "C" void XBLAS_DAXPY(OPENBLAS_CONST BLASINT n, OPENBLAS_CONST double a, OPENBLAS_CONST double *x, OPENBLAS_CONST BLASINT incx, OPENBLAS_CONST double *y, OPENBLAS_CONST BLASINT incy);
/* set the number of threads */
extern "C" void (*XBLAS_SET_THREAD_NUM)(int);
extern "C" void XBLAS_SET_THREAD_NUM(int);
/* get the number of threads */
//extern "C" int (*XBLAS_GET_THREAD_NUM)();
/* get the number of physical processors (cores).*/
extern "C" int (*XBLAS_GET_CORE_NUM)();
extern "C" int XBLAS_GET_CORE_NUM();
/* get the CPU corename */
//extern "C" char * (*XBLAS_GET_CORE_NAME)();
......@@ -113,58 +140,6 @@ extern "C" int (*XBLAS_GET_CORE_NUM)();
/* get the parallelization type used by OpenBLAS */
//extern "C" int (*XBLAS_GET_PARALLEL_TYPE)(void);
/* linux systems */
#ifndef _WIN32
/* cblas functions that are imported from the lib. See cblas.h in OpenBlas for more information */
extern "C" void cblas_sgemm(OPENBLAS_CONST enum CBLAS_ORDER Order, OPENBLAS_CONST enum CBLAS_TRANSPOSE TransA, OPENBLAS_CONST enum CBLAS_TRANSPOSE TransB,
OPENBLAS_CONST BLASINT M, OPENBLAS_CONST BLASINT N, OPENBLAS_CONST BLASINT K, OPENBLAS_CONST float alpha,
OPENBLAS_CONST float *A, OPENBLAS_CONST BLASINT lda,
OPENBLAS_CONST float *B, OPENBLAS_CONST BLASINT ldb,
OPENBLAS_CONST float beta, float *C, OPENBLAS_CONST BLASINT ldc);
extern "C" void cblas_dgemm(OPENBLAS_CONST enum CBLAS_ORDER Order, OPENBLAS_CONST enum CBLAS_TRANSPOSE TransA, OPENBLAS_CONST enum CBLAS_TRANSPOSE TransB,
OPENBLAS_CONST BLASINT M, OPENBLAS_CONST BLASINT N, OPENBLAS_CONST BLASINT K, OPENBLAS_CONST double alpha,
OPENBLAS_CONST double *A, OPENBLAS_CONST BLASINT lda,
OPENBLAS_CONST double *B, OPENBLAS_CONST BLASINT ldb,
OPENBLAS_CONST double beta, double *C, OPENBLAS_CONST BLASINT ldc);
extern "C" void cblas_sger (OPENBLAS_CONST enum CBLAS_ORDER order, OPENBLAS_CONST BLASINT M, OPENBLAS_CONST BLASINT N, OPENBLAS_CONST float alpha,
OPENBLAS_CONST float *X, OPENBLAS_CONST BLASINT incX, OPENBLAS_CONST float *Y, OPENBLAS_CONST BLASINT incY,
float *A, OPENBLAS_CONST BLASINT lda);
extern "C" void cblas_dger (OPENBLAS_CONST enum CBLAS_ORDER order, OPENBLAS_CONST BLASINT M, OPENBLAS_CONST BLASINT N, OPENBLAS_CONST double alpha,
OPENBLAS_CONST double *X, OPENBLAS_CONST BLASINT incX, OPENBLAS_CONST double *Y, OPENBLAS_CONST BLASINT incY,
double *A, OPENBLAS_CONST BLASINT lda);
#if defined(OPENBLAS)
/* better control of multi-threading */
extern "C" void openblas_set_num_threads(int num_threads);
extern "C" void goto_set_num_threads(int num_threads);
//extern "C" int openblas_get_num_threads(void);
extern "C" int openblas_get_num_procs(void);
//extern "C" char* openblas_get_config(void);
//extern "C" char* openblas_get_corename(void);
//extern "C" int openblas_get_parallel(void);
#endif
#endif
#if defined(MKL)
/* better control of multi-threading */
//_Mkl_Api(void,MKL_Set_Num_Threads,(int nth))
//_Mkl_Api(int,MKL_Get_Max_Threads,(void))
extern "C" void MKL_Set_Num_Threads(int num_threads);
extern "C" int MKL_Get_Max_Threads();
#define mkl_set_num_threads MKL_Set_Num_Threads
#define mkl_get_max_num_threads MKL_Get_Max_Threads
//extern "C" void mkl_set_num_threads(int num_threads);
//extern "C" void omp_set_num_threads(int num_threads);
//extern "C" int mkl_get_max_num_threads();
#endif
#if defined(CUDA_BLAS)
......@@ -186,24 +161,8 @@ extern void BLASMatrixMULD(int deviceID, double * a, double * b, double * c, int
#endif
#endif
#ifdef _WIN32
#include "windows.h"
extern HINSTANCE hBLASDll;
#else
#endif
/* load some stuff for BLAS */
extern void LoadBLAS(const char * dllFileName);
/* unload the libs */
extern void UnloadBLAS();
} /* end of the nts (NiuTrans.Tensor) namespace */
#endif
......@@ -160,8 +160,10 @@ extern bool useCUDA;
/* BLAS interfaces */
#ifdef DOUBELPRICSION
#define GEMM XBLAS_DGEMM
#define AXPY XBLAS_DAXPY
#else
#define GEMM XBLAS_SGEMM
#define AXPY XBLAS_SAXPY
#endif
extern void InitGlobalAll();
......
......@@ -82,10 +82,11 @@ void _MatrixMul2D(const XTensor * a, MATRIX_TRANS_TYPE transposedA,
b->dataType == DEFAULT_DTYPE &&
c->dataType == DEFAULT_DTYPE)
{
if (useBLAS)
#if defined(USE_BLAS)
_MatrixMULCPU(a, transposedA, b, transposedB, c, alpha, beta);
else
#else
_MatrixMul2DParallel(a, transposedA, b, transposedB, c, alpha, beta, parallelRunner);
#endif
}
else {
// TODO!!
......
......@@ -199,10 +199,7 @@ void _MatrixMulBatchedCPU(const XTensor * a, MATRIX_TRANS_TYPE transposedA,
bi->data = (char*)b->data + i * bRealBlockSize;
ci->data = (char*)c->data + i * cRealBlockSize;
#ifdef USE_BLAS
if (useBLAS)
_MatrixMULCPU(ai, transposedA, bi, transposedB, ci, alpha, beta);
else
_MatrixMul2D(ai, transposedA, bi, transposedB, ci, alpha, beta);
_MatrixMULCPU(ai, transposedA, bi, transposedB, ci, alpha, beta);
#else
_MatrixMul2D(ai, transposedA, bi, transposedB, ci, alpha, beta);
#endif
......@@ -262,10 +259,7 @@ void _MatrixMulBatchedCPU(const TensorList * a, MATRIX_TRANS_TYPE transposedA,
CheckNTErrors((bi->order == 2), "2d tensor (i.e., matrix) is required!");
CheckNTErrors((ci->order == 2), "2d tensor (i.e., matrix) is required!");
#ifdef USE_BLAS
if (useBLAS)
_MatrixMULCPU(ai, transposedA, bi, transposedB, ci, alpha, beta);
else
_MatrixMul2D(ai, transposedA, bi, transposedB, ci, alpha, beta);
#else
_MatrixMul2D(ai, transposedA, bi, transposedB, ci, alpha, beta);
#endif
......
......@@ -22,6 +22,7 @@
#include "../../XTensor.h"
#include "../../XName.h"
#include "../../XUtility.h"
#include "../../XBLAS.h"
#include "../movement/CopyValues.h"
#include "Sum.h"
#include "Sum.cuh"
......@@ -84,29 +85,57 @@ void _Sum(const XTensor * a, const XTensor * b, XTensor * c, DTYPE beta)
DTYPE * ap = (DTYPE*)a->data;
DTYPE * bp = (DTYPE*)b->data;
DTYPE * cp = (DTYPE*)c->data;
/* unrolling */
int num = a->unitNum;
if (num % 4 == 0) {
for (int i = 0; i < num; i += 4) {
cp[i] = ap[i] + bp[i] * beta;
cp[i + 1] = ap[i + 1] + bp[i + 1] * beta;
cp[i + 2] = ap[i + 2] + bp[i + 2] * beta;
cp[i + 3] = ap[i + 3] + bp[i + 3] * beta;
}
/* when c != a, OpenBLAS needs to copy a to c first. This operation
slow down the speed, so just use OpenBLAS when c == a */
#if defined(USE_BLAS)
if( c == a){
AXPY(a->unitNum,beta,bp,1,cp,1);
} else{
int num = a->unitNum;
if (num % 4 == 0) {
for (int i = 0; i < num; i += 4) {
cp[i] = ap[i] + bp[i] * beta;
cp[i + 1] = ap[i + 1] + bp[i + 1] * beta;
cp[i + 2] = ap[i + 2] + bp[i + 2] * beta;
cp[i + 3] = ap[i + 3] + bp[i + 3] * beta;
}
}
else if (num % 2 == 0) {
for (int i = 0; i < num; i += 2) {
cp[i] = ap[i] + bp[i] * beta;
cp[i + 1] = ap[i + 1] + bp[i + 1] * beta;
}
}
else {
for (int i = 0; i < num; i++) {
cp[i] = ap[i] + bp[i] * beta;
}
}
}
else if (num % 2 == 0) {
for (int i = 0; i < num; i += 2) {
cp[i] = ap[i] + bp[i] * beta;
cp[i + 1] = ap[i + 1] + bp[i + 1] * beta;
#else
/* unrolling */
int num = a->unitNum;
if (num % 4 == 0) {
for (int i = 0; i < num; i += 4) {
cp[i] = ap[i] + bp[i] * beta;
cp[i + 1] = ap[i + 1] + bp[i + 1] * beta;
cp[i + 2] = ap[i + 2] + bp[i + 2] * beta;
cp[i + 3] = ap[i + 3] + bp[i + 3] * beta;
}
}
}
else {
for (int i = 0; i < num; i++) {
cp[i] = ap[i] + bp[i] * beta;
else if (num % 2 == 0) {
for (int i = 0; i < num; i += 2) {
cp[i] = ap[i] + bp[i] * beta;
cp[i + 1] = ap[i + 1] + bp[i + 1] * beta;
}
}
else {
for (int i = 0; i < num; i++) {
cp[i] = ap[i] + bp[i] * beta;
}
}
#endif
}
}
else {
// TODO!!
ShowNTErrors("TODO!");
......
......@@ -21,6 +21,8 @@
#include "../../XTensor.h"
#include "../../XName.h"
#include "../../XBLAS.h"
#include "VectorBuffer.h"
#include "ReduceMax.h"
#include "ReduceMax.cuh"
......@@ -76,18 +78,75 @@ void _ReduceMax(const XTensor * input, XTensor * output, int dim)
}
blockSize = stride * strideNum;
for(int k = 0; k < blockNum; k++){
DTYPE * ip = (DTYPE*)input->data + blockSize * k;
DTYPE * op = (DTYPE*)output->data + stride * k;
for(int i = 0; i < stride; i++){
DTYPE max = FLOAT_MIN;
DTYPE * ipe = ip + blockSize;
for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride){
DTYPE v = *ipb;
if(max < v)
max = v;
if(input->dimSizeRDI[0] % (4 * 32 / sizeof(DTYPE)) == 0 && input->dimSizeRDI[0] >= 32){
int vecBufLength = 32 / sizeof(DTYPE);
if(dimRDI == 0){
//data is contiguous in dim 0
for(int i = 0; i < blockNum; i++){
DTYPE * ip = (DTYPE*)input->data + blockSize * i;
DTYPE * op = (DTYPE*)output->data + i;
VectorBuffer vecBuf[4];
for(int j = 0; j < 4; j++){
vecBuf[j] = VectorBuffer::loadu((DTYPE*)(ip) + j * vecBufLength);
}
for(int j = 1; j < strideNum / 32; j++){
const DTYPE* ptr = (DTYPE*)(ip + j * vecBufLength);
vecBuf[0] = vecBuf[0].maxData(VectorBuffer::loadu(ptr + 0 * vecBufLength));
vecBuf[1] = vecBuf[1].maxData(VectorBuffer::loadu(ptr + 1 * vecBufLength));
vecBuf[2] = vecBuf[2].maxData(VectorBuffer::loadu(ptr + 2 * vecBufLength));
vecBuf[3] = vecBuf[3].maxData(VectorBuffer::loadu(ptr + 3 * vecBufLength));
}
vecBuf[0] = vecBuf[0].maxData(vecBuf[1]);
vecBuf[0] = vecBuf[0].maxData(vecBuf[2]);
vecBuf[0] = vecBuf[0].maxData(vecBuf[3]);
DTYPE maxN = DTYPE_MIN;
for(int k = 0; k < vecBufLength; k++){
maxN = MAX(maxN,vecBuf[0][k]);
}
*op = maxN;
}
} else{
//data is separated
for(int i = 0; i < blockNum; i++){
for(int j = 0; j < input->dimSizeRDI[0] / 32; j++){
DTYPE * ip = (DTYPE*)input->data + blockSize * i;
DTYPE * op = (DTYPE*)output->data + stride * i;
VectorBuffer vecBuf[4];
for(int k = 0; k < 4; k++){
vecBuf[k] = VectorBuffer::loadu((DTYPE*)(ip) + (j * 4 + k) * 32 / sizeof(DTYPE));
}
for(int k = 1; k < strideNum; k++){
DTYPE * ptr = ip + k * stride + (j * 4) * vecBufLength;
vecBuf[0] = vecBuf[0].maxData(VectorBuffer::loadu(ptr + 0 * vecBufLength));
vecBuf[1] = vecBuf[1].maxData(VectorBuffer::loadu(ptr + 1 * vecBufLength));
vecBuf[2] = vecBuf[2].maxData(VectorBuffer::loadu(ptr + 2 * vecBufLength));
vecBuf[3] = vecBuf[3].maxData(VectorBuffer::loadu(ptr + 3 * vecBufLength));
}
for(int k = 0; k < 4; k++){
for(int l = 0; l < vecBufLength; l++)
*(op + j * 32 + 8 * k + l) = vecBuf[k][l];
}
}
}
}
}//run vector buffer
else{
for(int k = 0; k < blockNum; k++){
DTYPE * ip = (DTYPE*)input->data + blockSize * k;
DTYPE * op = (DTYPE*)output->data + stride * k;
for(int i = 0; i < stride; i++){
DTYPE max = DTYPE_MIN;
DTYPE * ipe = ip + blockSize;
for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride){
DTYPE v = *ipb;
if(max < v)
max = v;
}
*(op + i) = max;
}
*(op + i) = max;
}
}
}
......
......@@ -41,19 +41,19 @@ float shflDownReduceMax(float input)
"{"
".reg .f32 r0;"
".reg .pred p;"
"shfl.down.b32 r0, %1, 0x10, 0x1f;"
"shfl.sync.down.b32 r0, %1, 0x10, 0x1f,0xffffffff;"
"setp.lt.f32 p,%1,r0;"
"@p mov.f32 %1,r0;"
"shfl.down.b32 r0, %1, 0x8, 0xf;"
"shfl.sync.down.b32 r0, %1, 0x8, 0xf,0xffffffff;"
"setp.lt.f32 p,%1,r0;"
"@p mov.f32 %1,r0;"
"shfl.down.b32 r0, %1, 0x4, 0x7;"
"shfl.sync.down.b32 r0, %1, 0x4, 0x7,0xffffffff;"
"setp.lt.f32 p,%1,r0;"
"@p mov.f32 %1,r0;"
"shfl.down.b32 r0, %1, 0x2, 0x3;"
"shfl.sync.down.b32 r0, %1, 0x2, 0x3,0xffffffff;"
"setp.lt.f32 p,%1,r0;"
"@p mov.f32 %1,r0;"
"shfl.down.b32 r0, %1, 0x1, 0x1;"
"shfl.sync.down.b32 r0, %1, 0x1, 0x1,0xffffffff;"
"setp.lt.f32 p, %1, r0; "
"@p mov.f32 %1,r0;"
"mov.f32 %0,%1;"
......@@ -73,19 +73,19 @@ int shflDownReduceMax(int input)
"{"
".reg .s32 r0;"
".reg .pred p;"
"shfl.down.b32 r0, %1, 0x10, 0x1f;"
"shfl.sync.down.b32 r0, %1, 0x10, 0x1f,0xffffffff;"
"setp.lt.s32 p,%1,r0;"
"@p mov.s32 %1,r0;"
"shfl.down.b32 r0, %1, 0x8, 0xf;"
"shfl.sync.down.b32 r0, %1, 0x8, 0xf,0xffffffff;"
"setp.lt.s32 p,%1,r0;"
"@p mov.s32 %1,r0;"
"shfl.down.b32 r0, %1, 0x4, 0x7;"
"shfl.sync.down.b32 r0, %1, 0x4, 0x7,0xffffffff;"
"setp.lt.s32 p,%1,r0;"
"@p mov.s32 %1,r0;"
"shfl.down.b32 r0, %1, 0x2, 0x3;"
"shfl.sync.down.b32 r0, %1, 0x2, 0x3,0xffffffff;"
"setp.lt.s32 p,%1,r0;"
"@p mov.s32 %1,r0;"
"shfl.down.b32 r0, %1, 0x1, 0x1;"
"shfl.sync.down.b32 r0, %1, 0x1, 0x1,0xffffffff;"
"setp.lt.s32 p, %1, r0; "
"@p mov.s32 %1,r0;"
"mov.s32 %0,%1;"
......
......@@ -37,15 +37,15 @@ float shflDownReduceSum(float input)
asm volatile(
"{"
".reg .f32 r0;"
"shfl.down.b32 r0, %1, 0x10, 0x1f;"
"shfl.sync.down.b32 r0, %1, 0x10, 0x1f,0xffffffff;"
"add.f32 %1, r0, %1;"
"shfl.down.b32 r0, %1, 0x8, 0xf;"
"shfl.sync.down.b32 r0, %1, 0x8, 0xf,0xffffffff;"
"add.f32 %1, r0, %1;"
"shfl.down.b32 r0, %1, 0x4, 0x7;"
"shfl.sync.down.b32 r0, %1, 0x4, 0x7,0xffffffff;"
"add.f32 %1, r0, %1;"
"shfl.down.b32 r0, %1, 0x2, 0x3;"
"shfl.sync.down.b32 r0, %1, 0x2, 0x3,0xffffffff;"
"add.f32 %1, r0, %1;"
"shfl.down.b32 r0, %1, 0x1, 0x1;"
"shfl.sync.down.b32 r0, %1, 0x1, 0x1,0xffffffff;"
"add.f32 %0, r0, %1;"
"}"
: "=f"(output) : "f"(input));
......@@ -62,15 +62,15 @@ int shflDownReduceSum(int input)
asm volatile(
"{"
".reg .s32 r0;"
"shfl.down.b32 r0, %1, 0x10, 0x1f;"
"shfl.sync.down.b32 r0, %1, 0x10, 0x1f,0xffffffff;"
"add.s32 %1, r0, %1;"
"shfl.down.b32 r0, %1, 0x8, 0xf;"
"shfl.sync.down.b32 r0, %1, 0x8, 0xf,0xffffffff;"
"add.s32 %1, r0, %1;"
"shfl.down.b32 r0, %1, 0x4, 0x7;"
"shfl.sync.down.b32 r0, %1, 0x4, 0x7,0xffffffff;"
"add.s32 %1, r0, %1;"
"shfl.down.b32 r0, %1, 0x2, 0x3;"
"shfl.sync.down.b32 r0, %1, 0x2, 0x3,0xffffffff;"
"add.s32 %1, r0, %1;"
"shfl.down.b32 r0, %1, 0x1, 0x1;"
"shfl.sync.down.b32 r0, %1, 0x1, 0x1,0xffffffff;"
"add.s32 %0, r0, %1;"
"}"
: "=r"(output) : "r"(input));
......
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: ZHANG Yuhao (email: zhangyuhao@stu.neu.edu.cn) 2019-07-23
*/
#include "VectorBuffer.h"
namespace nts {
/* data size for each buffer */
int VectorBuffer::size()
{
return 32 / sizeof(DTYPE);
}
/* constructor */
VectorBuffer::VectorBuffer()
{
}
/*
constructor
initial values with val
*/
VectorBuffer::VectorBuffer(DTYPE val)
{
for (int i = 0; i != size(); i++) {
values[i] = val;
}
}
/* load data */
VectorBuffer VectorBuffer::loadu(const DTYPE* ptr, bool isExp , DTYPE power , DTYPE* bias )
{
int count = 32 / sizeof(DTYPE);
VectorBuffer vec;
if (isExp) {
if (bias == NULL) {
if (power == (DTYPE)1.0) {
for (int i = 0; i != count; i++) {
vec.values[i] = (DTYPE)exp(*(ptr + i));
}
}
else if (power == (DTYPE)2.0) {
for (int i = 0; i != count; i++) {
vec.values[i] = (DTYPE)exp((*(ptr + i)) * (*(ptr + i)));
}
}
else if (power == (DTYPE)0.5) {
for (int i = 0; i != count; i++) {
vec.values[i] = (DTYPE)exp(sqrt(*(ptr + i)));
}
}
else {
for (int i = 0; i != count; i++) {
vec.values[i] = (DTYPE)exp(pow(*(ptr + i), power));
}
}
}/*is bias == NULL*/
else {
if (power == (DTYPE)1.0) {
for (int i = 0; i != count; i++) {
vec.values[i] = (DTYPE)exp(*(ptr + i) - bias[i]);
}
}
else if (power == (DTYPE)2.0) {
for (int i = 0; i != count; i++) {
DTYPE value = *(ptr + i) - bias[i];
vec.values[i] = (DTYPE)exp(value * value);
}
}
else if (power == (DTYPE)0.5) {
for (int i = 0; i != count; i++) {
vec.values[i] = (DTYPE)exp(sqrt(*(ptr + i) - bias[i]));
}
}
else {
for (int i = 0; i != count; i++) {
vec.values[i] = (DTYPE)exp(pow(*(ptr + i) - bias[i], power));
}
}
}
}//isExp
else {
if (bias == NULL) {
if (power == (DTYPE)1.0) {
memcpy(vec.values, ptr, count * sizeof(DTYPE));
}
else if (power == (DTYPE)2.0) {
for (int i = 0; i != count; i++) {
vec.values[i] = (*(ptr + i)) * (*(ptr + i));
}
}
else if (power == (DTYPE)0.5) {
for (int i = 0; i != count; i++) {
vec.values[i] = (DTYPE)sqrt(*(ptr + i));
}
}
else {
for (int i = 0; i != count; i++) {
vec.values[i] = (DTYPE)pow(*(ptr + i), power);
}
}
}// if bias == NULL
else {
if (power == (DTYPE)1.0) {
for (int i = 0; i != count; i++) {
vec.values[i] = *(ptr + i) - bias[i];
}
}
else if (power == (DTYPE)2.0) {
for (int i = 0; i != count; i++) {
DTYPE value = *(ptr + i) - bias[i];
vec.values[i] = value * value;
}
}
else if (power == (DTYPE)0.5) {
for (int i = 0; i != count; i++) {
vec.values[i] = (DTYPE)sqrt(*(ptr + i) - bias[i]);
}
}
else {
for (int i = 0; i != count; i++) {
vec.values[i] = (DTYPE)pow(*(ptr + i) - bias[i], power);
}
}
}
}
return vec;
}
/* overloading [] */
const DTYPE& VectorBuffer::operator[](int idx)const
{
return values[idx];
}
/* overloading + */
VectorBuffer VectorBuffer::operator+(const VectorBuffer &a)
{
for (int i = 0; i != a.size(); i++) {
this->values[i] = a[i] + this->values[i];
}
return *this;
}
/* conculte the max of two buffer */
VectorBuffer VectorBuffer::maxData(const VectorBuffer &a) {
for (int i = 0; i != a.size(); i++) {
this->values[i] = MAX(a[i], this->values[i]);
}
return *this;
}
}/* end of the nts (NiuTrans.Tensor) namespace */
\ No newline at end of file
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: ZHANG Yuhao (email: zhangyuhao@stu.neu.edu.cn) 2019-07-23
*/
//#include <cstring>
#include <math.h>
#include "../../XGlobal.h"
namespace nts {
class VectorBuffer {
private:
/* buffer for concluter */
DTYPE values[32 / sizeof(DTYPE)] = { 0 };
public:
/* data size for each buffer */
static int size();
/* constructor */
VectorBuffer();
/* constructor */
VectorBuffer(DTYPE val);
/* load data */
static VectorBuffer loadu(const DTYPE* ptr, bool isExp = false, DTYPE power = (DTYPE)1.0F, DTYPE* bias = NULL);
/* overloading [] */
const DTYPE& operator[](int idx)const;
/* overloading + */
VectorBuffer operator+(const VectorBuffer &a);
/* conculte the max of two buffer */
VectorBuffer maxData(const VectorBuffer &a);
};
}
\ No newline at end of file
......@@ -377,8 +377,8 @@ get the top-k items
template<class T> __global__
void KernelTopK3(T * input, int stride, int strideNum, int blockNum, int k, T minValue, T * output, int * index)
{
__shared__ CudaHeapNode<T> heapData[(SHARED_MEMORY_SIZE - 1024 * sizeof(T)) / sizeof(CudaHeapNode<T>)];
__shared__ T eachHeapMaxValue[1024];
__shared__ CudaHeapNode<T> heapData[(SHARED_MEMORY_SIZE - 512 * sizeof(T)) / sizeof(CudaHeapNode<T>)];
__shared__ T eachHeapMaxValue[512];
/*optimization k size the parameter must more than half of k*/
int parameter = 0;
......@@ -429,7 +429,7 @@ void KernelTopK3(T * input, int stride, int strideNum, int blockNum, int k, T mi
}
__syncthreads();
/*to merge the heap use another way*/
/* to merge the heap use another way */
T minData = minValue;
int heapLimit = heap.count / 2;
if (heapLimit % 2 == 0 && heapLimit != 0) heapLimit -= 1;
......@@ -438,12 +438,13 @@ void KernelTopK3(T * input, int stride, int strideNum, int blockNum, int k, T mi
minData = heap.items[counter].value;
}
eachHeapMaxValue[threadIdx.y * blockDim.x + threadIdx.x] = minData;
//need more optimation
if (i == 0) {
int threadLimit = (threadIdx.y + 1) * blockDim.x;
int threadLimit = threadIdx.y * blockDim.x + min(blockDim.x,strideNum);
CudaXHeap<MIN_HEAP, T> chooseHeap(k, heapData + k * ((blockDim.x * blockDim.y) + threadIdx.y));
int counter = threadIdx.y * blockDim.x;
for (; counter < threadIdx.y * blockDim.x + k; ++counter) {
for (; counter < threadIdx.y * blockDim.x + min(k, blockDim.x); ++counter) {
chooseHeap.Push(counter, eachHeapMaxValue[counter]);
}
for (; counter < threadLimit; ++counter) {
......@@ -451,15 +452,16 @@ void KernelTopK3(T * input, int stride, int strideNum, int blockNum, int k, T mi
chooseHeap.ReplaceTop(counter, eachHeapMaxValue[counter]);
}
}
int heapNum = chooseHeap.count;
CudaXHeap<MIN_HEAP, T> ansHeapData(k, k - parameter, heapData + k * chooseHeap.items[0].index);
int miss = parameter;
for (counter = 1; counter < k; ++counter) {
for (counter = 1; counter < heapNum; ++counter) {
chooseHeap.items[0] = chooseHeap.items[chooseHeap.count - 1];
chooseHeap.count--;
chooseHeap.Down(0);
CudaHeapNode<T> * cmpHeapData = heapData + k * (chooseHeap.items[0].index);
int cmpHeapLimit = 0;
if (counter + heapLimit <= k - parameter){
if (counter + heapLimit <= k - parameter && heapNum == k){
cmpHeapLimit = heapLimit;
}
/* take the max data from the minHeap,so start search from the leaf node */
......@@ -840,7 +842,7 @@ void _CudaTopK(const XTensor * a, XTensor * b, XTensor * index, int dim, int k)
/* we run the kernel if the heaps can fit into the shared memory */
cudaGrids[1] *= cudaBlocks[1];
cudaBlocks[1] = 1;
if ((cudaBlocks[0] * cudaBlocks[1] + 1) * k * (a->unitSize + sizeof(int)) < SHARED_MEMORY_SIZE) {
if ((cudaBlocks[0] * cudaBlocks[1] + 1) * k * (a->unitSize + sizeof(int)) + (512 * sizeof(int))< SHARED_MEMORY_SIZE) {
if (a->dataType == DEFAULT_DTYPE) {
KernelTopK3<DTYPE> <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >>>
((DTYPE*)a->data, stride, strideNumA, blockNum, k, DTYPE_MIN,
......@@ -869,7 +871,7 @@ void _CudaTopK(const XTensor * a, XTensor * b, XTensor * index, int dim, int k)
//delete indexA;
int workerNum = WORKERSNUM;
GDevs.GetCudaThread2D(a->mem->devID,
GDevs.GetCudaThread2D(a->devID,
workerNum, stride * blockNum, MAX_INT,
cudaGrids, cudaBlocks);
if (a->dataType == DEFAULT_DTYPE) {
......
......@@ -171,7 +171,7 @@ float broadcast(float input)
float output;
asm(
"{"
"shfl.idx.b32 %0,%1,0x0,0x1f;"
"shfl.sync.idx.b32 %0,%1,0x0,0x1f,0xffffffff;"
"}"
:"=f"(output) : "f"(input)
);
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论