Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
8
Issues
8
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
NiuTrans.Tensor
Commits
6a0f0557
Commit
6a0f0557
authored
Mar 31, 2021
by
xiaotong
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
bug fixes for dealing with inactive job workers
parent
51e02fd6
隐藏空白字符变更
内嵌
并排
正在显示
4 个修改的文件
包含
80 行增加
和
70 行删除
+80
-70
source/train/XLeader.cpp
+30
-23
source/train/XLeader.h
+7
-4
source/train/XLeaderAllReduce.cpp
+32
-41
source/train/XLeaderPS.cpp
+11
-2
没有找到文件。
source/train/XLeader.cpp
查看文件 @
6a0f0557
...
@@ -306,28 +306,27 @@ void XLeader::AddCollectWorker(DATA_COLLECT_TYPE mode)
...
@@ -306,28 +306,27 @@ void XLeader::AddCollectWorker(DATA_COLLECT_TYPE mode)
cworkers
.
Add
(
worker
);
cworkers
.
Add
(
worker
);
}
}
/*
/* add model-update workers */
add a model-update worker
void
XLeader
::
AddUpdateWorker
(
int
n
)
>> model - the model
*/
void
XLeader
::
AddUpdateWorker
(
XModel
*
model
)
{
{
XWorkerUpdate
*
worker
=
new
XWorkerUpdate
();
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
uworkers
.
Add
(
worker
);
XWorkerUpdate
*
worker
=
new
XWorkerUpdate
();
uworkers
.
Add
(
worker
);
}
}
}
/* add a data-broadcasting worker */
/*
add a data-broadcasting worker */
void
XLeader
::
AddBroadcastWorker
()
void
XLeader
::
AddBroadcastWorker
()
{
{
XWorkerBroadcast
*
worker
=
new
XWorkerBroadcast
();
XWorkerBroadcast
*
worker
=
new
XWorkerBroadcast
();
bworkers
.
Add
(
worker
);
bworkers
.
Add
(
worker
);
}
}
/*
/*
add
a
parameter worker (or a pipeline)
add parameter worker (or a pipeline)
>> n - number of
paramet
ers
>> n - number of
work
ers
*/
*/
void
XLeader
::
Add
Paramter
Worker
(
int
n
)
void
XLeader
::
Add
Auxiliary
Worker
(
int
n
)
{
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
XWorker
*
worker
=
new
XWorker
();
XWorker
*
worker
=
new
XWorker
();
...
@@ -349,17 +348,7 @@ void XLeader::DestroyParamMap()
...
@@ -349,17 +348,7 @@ void XLeader::DestroyParamMap()
/* generate the map of parameters */
/* generate the map of parameters */
void
XLeader
::
MakeParamMap
()
void
XLeader
::
MakeParamMap
()
{
{
int
modelCount
=
0
;
int
modelCount
=
CountModels
();
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
XWorker
*
worker
=
(
XWorker
*
)
jworkers
[
i
];
if
(
worker
->
GetWorkerType
()
==
XWORKER_TYPE_JOB
)
{
modelCount
+=
worker
->
GetModelNum
();
CheckNTErrors
(
worker
->
GetModelNum
()
==
1
,
"Wrong model number!"
);
}
else
{
ShowNTErrors
(
"TODO: support a new XWorker type!"
);
}
}
if
(
modelCount
!=
modelNum
){
if
(
modelCount
!=
modelNum
){
DestroyParamMap
();
DestroyParamMap
();
...
@@ -390,4 +379,22 @@ void XLeader::MakeParamMap()
...
@@ -390,4 +379,22 @@ void XLeader::MakeParamMap()
modelNum
=
modelCount
;
modelNum
=
modelCount
;
}
}
/* count all the models */
int
XLeader
::
CountModels
()
{
int
modelCount
=
0
;
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
XWorker
*
worker
=
(
XWorker
*
)
jworkers
[
i
];
if
(
worker
->
GetWorkerType
()
==
XWORKER_TYPE_JOB
)
{
modelCount
+=
worker
->
GetModelNum
();
CheckNTErrors
(
worker
->
GetModelNum
()
==
1
,
"Wrong model number!"
);
}
else
{
ShowNTErrors
(
"TODO: support a new XWorker type!"
);
}
}
return
modelCount
;
}
}
/* end of the nts (NiuTrans.Tensor) namespace */
}
/* end of the nts (NiuTrans.Tensor) namespace */
source/train/XLeader.h
查看文件 @
6a0f0557
...
@@ -161,20 +161,23 @@ public:
...
@@ -161,20 +161,23 @@ public:
/* add a data-collecting worker */
/* add a data-collecting worker */
void
AddCollectWorker
(
DATA_COLLECT_TYPE
mode
=
DATA_COLLECT_P2P
);
void
AddCollectWorker
(
DATA_COLLECT_TYPE
mode
=
DATA_COLLECT_P2P
);
/* add
a model-update worker
*/
/* add
model-update workers
*/
void
AddUpdateWorker
(
XModel
*
model
);
void
AddUpdateWorker
(
int
n
=
1
);
/* add a data-broadcasting worker */
/* add a data-broadcasting worker */
void
AddBroadcastWorker
();
void
AddBroadcastWorker
();
/* add a
parameter
worker (or a pipeline) */
/* add a
uxiliary
worker (or a pipeline) */
void
Add
Paramter
Worker
(
int
n
);
void
Add
Auxiliary
Worker
(
int
n
);
/* destroy the parameter map (and gradient map) */
/* destroy the parameter map (and gradient map) */
void
DestroyParamMap
();
void
DestroyParamMap
();
/* generate the map of parameters */
/* generate the map of parameters */
void
MakeParamMap
();
void
MakeParamMap
();
/* count all the models */
int
CountModels
();
};
};
}
}
...
...
source/train/XLeaderAllReduce.cpp
查看文件 @
6a0f0557
...
@@ -57,8 +57,8 @@ void XLeaderAllReduce::MakeAll(XConfig * config, XModel * model, const int * dev
...
@@ -57,8 +57,8 @@ void XLeaderAllReduce::MakeAll(XConfig * config, XModel * model, const int * dev
Init
();
Init
();
AddJobWorker
(
model
,
jobWorkerNum
,
devIDs
);
AddJobWorker
(
model
,
jobWorkerNum
,
devIDs
);
AddCollectWorker
();
AddCollectWorker
();
for
(
int
i
=
0
;
i
<
jobWorkerNum
;
i
++
)
AddUpdateWorker
();
AddUpdateWorker
(
model
);
AddAuxiliaryWorker
(
CountModels
()
);
XLeader
::
MakeAll
(
config
,
model
);
XLeader
::
MakeAll
(
config
,
model
);
}
}
...
@@ -168,8 +168,8 @@ int XLeaderAllReduce::RunModel(XConfig* config, DataDistributeBase* dataDistribu
...
@@ -168,8 +168,8 @@ int XLeaderAllReduce::RunModel(XConfig* config, DataDistributeBase* dataDistribu
/* job in queue 1: run the model */
/* job in queue 1: run the model */
worker
->
AddJobNeuralNet
(
jmodel
,
worker
->
AddJobNeuralNet
(
jmodel
,
worker
->
GetInput
(),
worker
->
GetOutput
(),
worker
->
GetInput
(),
worker
->
GetOutput
(),
worker
->
GetGold
(),
worker
->
GetLoss
());
worker
->
GetGold
(),
worker
->
GetLoss
());
/* job in queue 1: make a record of the run */
/* job in queue 1: make a record of the run */
worker
->
AddJobRecord
(
&
serverRecord
);
worker
->
AddJobRecord
(
&
serverRecord
);
...
@@ -193,37 +193,23 @@ update the model in a standard server-worker manner
...
@@ -193,37 +193,23 @@ update the model in a standard server-worker manner
*/
*/
void
XLeaderAllReduce
::
RunUpdate
(
XConfig
*
config
,
XOptimizer
*
optimizer
,
const
int
*
active
)
void
XLeaderAllReduce
::
RunUpdate
(
XConfig
*
config
,
XOptimizer
*
optimizer
,
const
int
*
active
)
{
{
/* workers */
XWorkerCollect
*
collecter
=
(
XWorkerCollect
*
)
cworkers
.
GetItem
(
0
);
XWorkerCollect
*
collecter
=
(
XWorkerCollect
*
)
cworkers
.
GetItem
(
0
);
XWorkerUpdate
*
updater
=
(
XWorkerUpdate
*
)
uworkers
.
GetItem
(
0
);
XWorkerBroadcast
*
broadcaster
=
(
XWorkerBroadcast
*
)
bworkers
.
GetItem
(
0
);
CheckNTErrors
(
uworkers
.
count
>=
modelNum
,
"No enough updaters!"
);
/* parameter map */
/* parameter map */
MakeParamMap
();
MakeParamMap
();
/* all member models */
/* all member models */
XList
membersAll
(
jworkers
.
count
);
XList
membersAll
(
jworkers
.
count
);
/* job queues */
XList
jobQueues
;
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
i
];
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
i
];
membersAll
.
Add
(
worker
->
GetModel
());
membersAll
.
Add
(
worker
->
GetModel
());
}
}
for
(
int
i
=
0
;
i
<
aworkers
.
count
;
i
++
)
{
/* we reduce gradient across all job workers and update the parameter
XWorker
*
worker
=
(
XWorker
*
)
aworkers
[
i
];
on each job worker. */
jobQueues
.
Add
(
worker
->
GetJobQueue
());
}
CheckNTErrors
(
jobQueues
.
count
==
serverModel
.
paramNum
,
"Incompatiable model!"
);
/* jobs in queue 2 (say jobQueue): collect the (gradient) data.
This is a reduce process. Then we add a job to to update the model. followed
by a job to broadcast the lastest parameters to workers. NOTE that we
would update a worker to the latest model parameters, even if it is not
involved in this run. */
int
finished
=
0
;
int
finished
=
0
;
...
@@ -270,25 +256,27 @@ void XLeaderAllReduce::RunUpdate(XConfig* config, XOptimizer* optimizer, const i
...
@@ -270,25 +256,27 @@ void XLeaderAllReduce::RunUpdate(XConfig* config, XOptimizer* optimizer, const i
for
(
int
n
=
0
,
i
=
0
;
n
<
jworkers
.
count
;
n
++
)
{
for
(
int
n
=
0
,
i
=
0
;
n
<
jworkers
.
count
;
n
++
)
{
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
n
];
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
n
];
for
(
int
m
=
0
;
m
<
worker
->
GetModelNum
();
m
++
,
i
++
)
{
for
(
int
m
=
0
;
m
<
worker
->
GetModelNum
();
m
++
,
i
++
)
{
/* skip the inactive model */
if
(
modelFlag
[
i
]
==
0
)
continue
;
XTensorKeeper
&
paramWorker
=
paramMap
[
j
][
i
];
XTensorKeeper
&
paramWorker
=
paramMap
[
j
][
i
];
/* isGradFinished is true only if the model finishes the computation
/* isGradFinished is true only if the model finishes the computation
(in another thread) */
(in another thread) */
if
(
paramWorker
.
flag
==
PARAM_STATE_NOT_READY
&&
paramWorker
.
tensor
->
isGradFinished
)
{
if
(
paramWorker
.
flag
==
PARAM_STATE_NOT_READY
&&
paramWorker
.
tensor
->
isGradFinished
)
{
/* get the gradient */
/* get the gradient */
paramWorker
.
grad
=
paramWorker
.
tensor
->
grad
;
//paramWorker.grad = paramWorker.tensor->grad;
/* the job queue of updating parameter j */
XQueue
*
jobQueue
=
(
XQueue
*
)
jobQueues
.
GetItem
(
j
);
/* data transmit */
/* data transmit */
collecter
->
AddJobCollectDataP2P
(
jobQueue
,
paramWorker
.
grad
,
paramServer
.
grad
);
//collecter->AddJobCollectDataP2P(NULL
, paramWorker.grad, paramServer.grad);
collecter
->
AddJobEnqueueFinished
(
jobQueue
);
//collecter->AddJobEnqueueFinished(
);
/* We keep the worker parameter in a list. It would be used when we broadcast
/* We keep the worker parameter in a list. It would be used when we broadcast
the updated paramter to the workers, that is, this is a list of worker
the updated paramter to the workers, that is, this is a list of worker
parameters. */
parameters. */
paramList
[
j
].
Add
(
&
paramWorker
);
paramList
[
j
].
Add
(
&
paramWorker
);
/* reset the flag */
/* reset the flag */
...
@@ -297,19 +285,22 @@ void XLeaderAllReduce::RunUpdate(XConfig* config, XOptimizer* optimizer, const i
...
@@ -297,19 +285,22 @@ void XLeaderAllReduce::RunUpdate(XConfig* config, XOptimizer* optimizer, const i
finishedCount
[
j
]
++
;
finishedCount
[
j
]
++
;
/* we call model update (in another thread) and then
/* we call model update (in another thread) and then
broadcast the new parameters to member models
broadcast the new parameters to member models
(in another thread) */
(in another thread) */
if
(
finishedCount
[
j
]
==
activeModelCount
)
{
if
(
finishedCount
[
j
]
==
activeModelCount
)
{
paramServer
.
flag
=
PARAM_STATE_COLLECTED
;
paramServer
.
flag
=
PARAM_STATE_COLLECTED
;
if
(
updater
!=
NULL
)
{
/* update the parameters */
updater
->
AddJobUpdate
(
jobQueue
,
&
paramServer
,
optimizer
);
updater
->
AddJobEnqueueFinished
(
jobQueue
);
/* broadcast the new parameter to other models */
/* call the all-reduce method to collect the gradient and share
broadcaster
->
AddJobBroadcast
(
jobQueue
,
&
paramServer
,
&
paramList
[
j
]);
the gradient sum across models */
broadcaster
->
AddJobEnqueueFinished
(
jobQueue
);
/* update on every model. NOTE THAT we do not worry about the
inconsistence issue of updated parameters across models because
the all-reduce method can garantee that the model shared the same
copy of the gradient. */
for
(
int
k
=
0
;
k
<
modelNum
;
k
++
)
{
XWorkerUpdate
*
updater
=
(
XWorkerUpdate
*
)
uworkers
[
k
];
updater
->
AddJobUpdate
(
NULL
,
&
paramServer
,
optimizer
);
updater
->
AddJobEnqueueFinished
();
}
}
}
}
else
if
(
finishedCount
[
j
]
>
activeModelCount
)
{
else
if
(
finishedCount
[
j
]
>
activeModelCount
)
{
...
...
source/train/XLeaderPS.cpp
查看文件 @
6a0f0557
...
@@ -55,9 +55,9 @@ void XLeaderPS::MakeAll(XConfig * config, XModel * model, const int * devIDs, co
...
@@ -55,9 +55,9 @@ void XLeaderPS::MakeAll(XConfig * config, XModel * model, const int * devIDs, co
Init
();
Init
();
AddJobWorker
(
model
,
jobWorkerNum
,
devIDs
);
AddJobWorker
(
model
,
jobWorkerNum
,
devIDs
);
AddCollectWorker
();
AddCollectWorker
();
AddUpdateWorker
(
model
);
AddUpdateWorker
();
AddBroadcastWorker
();
AddBroadcastWorker
();
Add
Paramter
Worker
(
model
->
paramNum
);
Add
Auxiliary
Worker
(
model
->
paramNum
);
XLeader
::
MakeAll
(
config
,
model
);
XLeader
::
MakeAll
(
config
,
model
);
}
}
...
@@ -253,6 +253,10 @@ void XLeaderPS::RunUpdate(XConfig* config, XOptimizer* optimizer, const int* act
...
@@ -253,6 +253,10 @@ void XLeaderPS::RunUpdate(XConfig* config, XOptimizer* optimizer, const int* act
}
}
}
}
if
(
activeModelCount
!=
jworkers
.
count
)
{
int
nnn
=
0
;
}
XList
*
paramList
=
new
XList
[
serverModel
.
paramNum
];
XList
*
paramList
=
new
XList
[
serverModel
.
paramNum
];
CheckNTErrors
(
modelCount
==
modelNum
,
"Wrong model number!"
);
CheckNTErrors
(
modelCount
==
modelNum
,
"Wrong model number!"
);
...
@@ -276,6 +280,11 @@ void XLeaderPS::RunUpdate(XConfig* config, XOptimizer* optimizer, const int* act
...
@@ -276,6 +280,11 @@ void XLeaderPS::RunUpdate(XConfig* config, XOptimizer* optimizer, const int* act
for
(
int
n
=
0
,
i
=
0
;
n
<
jworkers
.
count
;
n
++
)
{
for
(
int
n
=
0
,
i
=
0
;
n
<
jworkers
.
count
;
n
++
)
{
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
n
];
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
n
];
for
(
int
m
=
0
;
m
<
worker
->
GetModelNum
();
m
++
,
i
++
)
{
for
(
int
m
=
0
;
m
<
worker
->
GetModelNum
();
m
++
,
i
++
)
{
/* skip the inactive model */
if
(
modelFlag
[
i
]
==
0
)
continue
;
XTensorKeeper
&
paramWorker
=
paramMap
[
j
][
i
];
XTensorKeeper
&
paramWorker
=
paramMap
[
j
][
i
];
/* isGradFinished is true only if the model finishes the computation
/* isGradFinished is true only if the model finishes the computation
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论