Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
8
Issues
8
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
NiuTrans.Tensor
Commits
6ec2d28c
Commit
6ec2d28c
authored
Mar 03, 2021
by
xiaotong
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
new class: XWorkerBroadcast
parent
40f5462d
隐藏空白字符变更
内嵌
并排
正在显示
7 个修改的文件
包含
309 行增加
和
9 行删除
+309
-9
source/train/XLeader.cpp
+61
-7
source/train/XLeader.h
+16
-0
source/train/XTrainer.cpp
+2
-0
source/train/XWorkerBroadcast.cpp
+148
-0
source/train/XWorkerBroadcast.h
+80
-0
source/train/XWorkerCollect.cpp
+0
-1
source/train/XWorkerCollect.h
+2
-1
没有找到文件。
source/train/XLeader.cpp
查看文件 @
6ec2d28c
...
...
@@ -61,6 +61,10 @@ void XLeader::Init()
for
(
int
i
=
0
;
i
<
uworkers
.
count
;
i
++
)
delete
(
XWorkerUpdate
*
)
uworkers
.
GetItem
(
i
);
uworkers
.
Clear
();
for
(
int
i
=
0
;
i
<
bworkers
.
count
;
i
++
)
delete
(
XWorkerBroadcast
*
)
bworkers
.
GetItem
(
i
);
bworkers
.
Clear
();
}
/* set id */
...
...
@@ -76,6 +80,36 @@ int XLeader::GetID()
}
/*
Set the server model. It distributes the server-side parameters on different devices.
>> config - the configuration
>> model - the base model
>> memberModels - the models that run on different devices. We can place
the server-side parameters on different member models.
*/
void
XLeader
::
SetServerModel
(
XConfig
*
config
,
XModel
*
model
,
XList
*
memberModels
)
{
serverModel
.
params
.
Clear
();
serverModel
.
params
.
AddList
(
&
model
->
params
);
/* TODO: we can place parameters on different devices */
}
/*
set the server model. It distributes the server-side parameters on different devices.
>> config - the configuration
>> model - the base model*/
void
XLeader
::
SetServerModel
(
XConfig
*
config
,
XModel
*
model
)
{
XList
members
;
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
XModel
*
member
=
(
XModel
*
)
jworkers
.
GetItem
(
i
);
members
.
Add
(
member
);
}
SetServerModel
(
config
,
model
,
&
members
);
}
/*
set the communication mode
>> myMode - the mode
*/
...
...
@@ -100,6 +134,11 @@ void XLeader::Start()
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
uworkers
.
GetItem
(
i
);
worker
->
Start
();
}
for
(
int
i
=
0
;
i
<
bworkers
.
count
;
i
++
)
{
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
bworkers
.
GetItem
(
i
);
worker
->
Start
();
}
}
/*
...
...
@@ -148,6 +187,13 @@ void XLeader::AddJobUpdateWorker(XModel * model, XOptimizer * optimizer)
uworkers
.
Add
(
worker
);
}
/* add a data-broadcasting worker */
void
XLeader
::
AddJobBroadcastWorker
()
{
XWorkerBroadcast
*
worker
=
new
XWorkerBroadcast
();
bworkers
.
Add
(
worker
);
}
/*
run the model (for one time)
>> config - the configuration
...
...
@@ -167,16 +213,16 @@ bool XLeader::Run(XConfig * config, DataDistributeBase * dataDistributor,
*/
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
i
];
XModel
*
model
=
worker
->
GetModel
();
XModel
*
j
model
=
worker
->
GetModel
();
/* get a batch of samples */
bool
fetched
=
dataDistributor
->
GetBatch
(
worker
->
GetInput
());
/* job in queue 1: refresh the model */
worker
->
AddJobRefresh
(
model
);
worker
->
AddJobRefresh
(
j
model
);
/* job in queue 1: run the model */
worker
->
AddJobNeuralNet
(
model
,
worker
->
GetInput
(),
worker
->
GetOutput
());
worker
->
AddJobNeuralNet
(
j
model
,
worker
->
GetInput
(),
worker
->
GetOutput
());
/* clear it */
worker
->
Clear
();
...
...
@@ -188,14 +234,13 @@ bool XLeader::Run(XConfig * config, DataDistributeBase * dataDistributor,
XList
members
(
jworkers
.
count
);
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
i
];
if
(
worker
->
GetModel
()
!=
model
)
members
.
Add
(
worker
->
GetModel
());
members
.
Add
(
worker
->
GetModel
());
}
/* job in queue 2: collect the (gradient) data */
if
(
cworkers
.
count
>
0
)
{
XWorkerCollect
*
collecter
=
(
XWorkerCollect
*
)
cworkers
.
GetItem
(
0
);
collecter
->
AddJobCollect
(
&
members
,
m
odel
);
collecter
->
AddJobCollect
(
&
members
,
&
serverM
odel
);
}
else
{
ShowNTErrors
(
"No data-collecting workers!"
);
...
...
@@ -204,12 +249,21 @@ bool XLeader::Run(XConfig * config, DataDistributeBase * dataDistributor,
/* job in queue 3: update the model */
if
(
uworkers
.
count
>
0
)
{
XWorkerUpdate
*
updater
=
(
XWorkerUpdate
*
)
uworkers
.
GetItem
(
0
);
updater
->
AddJobUpdate
(
m
odel
,
optimizer
);
updater
->
AddJobUpdate
(
&
serverM
odel
,
optimizer
);
}
else
{
ShowNTErrors
(
"No model-update workers!"
);
}
/* job in queue 4: broadcast the lastest parameters to workers */
if
(
bworkers
.
count
>
0
)
{
XWorkerBroadcast
*
broadcaster
=
(
XWorkerBroadcast
*
)
bworkers
.
GetItem
(
0
);
broadcaster
->
AddJobBroadcast
(
&
serverModel
,
&
members
);
}
else
{
ShowNTErrors
(
"No data-broadcasting workers!"
);
}
return
isDataOK
;
}
...
...
source/train/XLeader.h
查看文件 @
6ec2d28c
...
...
@@ -41,6 +41,7 @@
#include "XWorkerJob.h"
#include "XWorkerCollect.h"
#include "XWorkerUpdate.h"
#include "XWorkerBroadcast.h"
#include "../tensor/XConfig.h"
#include "../tensor/XList.h"
...
...
@@ -64,6 +65,9 @@ protected:
/* id of the leader */
int
id
;
/* a model that keeps the parameters (as a server) */
XModel
serverModel
;
/* communication mode */
XLEADER_MODE
mode
;
...
...
@@ -76,6 +80,9 @@ protected:
/* model-update workers */
XList
uworkers
;
/* data-broadcasting workers */
XList
bworkers
;
public
:
/* constructor */
XLeader
();
...
...
@@ -92,6 +99,12 @@ public:
/* get id */
int
GetID
();
/* set the server model */
void
SetServerModel
(
XConfig
*
config
,
XModel
*
model
,
XList
*
memberModels
);
/* set the server model */
void
SetServerModel
(
XConfig
*
config
,
XModel
*
model
);
/* start the workers */
void
Start
();
...
...
@@ -107,6 +120,9 @@ public:
/* add a model-update worker */
void
AddJobUpdateWorker
(
XModel
*
model
,
XOptimizer
*
optimizer
);
/* add a data-broadcasting worker */
void
AddJobBroadcastWorker
();
/* run the model (for one time) */
bool
Run
(
XConfig
*
config
,
DataDistributeBase
*
dataDistributor
,
XModel
*
model
,
XOptimizer
*
optimizer
);
...
...
source/train/XTrainer.cpp
查看文件 @
6ec2d28c
...
...
@@ -109,6 +109,8 @@ void XTrainer::Run(XConfig * config, DataDistributeBase * dataDistributor,
leader
.
AddJobWorker
(
model
,
jobNum
,
ids
);
leader
.
AddJobCollectWorker
();
leader
.
AddJobUpdateWorker
(
model
,
optimizer
);
leader
.
AddJobBroadcastWorker
();
leader
.
SetServerModel
(
config
,
model
);
leader
.
Start
();
/* train the model */
...
...
source/train/XWorkerBroadcast.cpp
0 → 100644
查看文件 @
6ec2d28c
/*
* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2016-2021
* Natural Language Processing Lab, Northeastern University
* and
* NiuTrans Research
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* The worker that boradcast the lastest parameters from the server to
* the workers.
*
* $Created by: XIAO Tong (xiaotong@mail.neu.edu.cn) 2021-03-03
*/
#include "XWorkerBroadcast.h"
#include "../tensor/core/CHeader.h"
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
/* constructor */
XWorkerBroadcast
::
XWorkerBroadcast
()
{
}
/* de-constructor */
XWorkerBroadcast
::~
XWorkerBroadcast
()
{
}
/* set the broadcasting type */
void
XWorkerBroadcast
::
SetBroadcastMode
(
DATA_BROADCAST_TYPE
myMode
)
{
broadcastMode
=
myMode
;
}
/*
broadcast data
>> source - the data that we want to broadcast
>> targetList - the target places that we recieve the data
>> sleepTime - the waiting time in broadcasting
*/
void
XWorkerBroadcast
::
BroadcastData
(
XModel
*
source
,
XList
*
targetList
,
long
sleepTime
)
{
TensorList
&
sp
=
source
->
params
;
int
finished
=
0
;
/* check */
for
(
int
i
=
0
;
i
<
targetList
->
count
;
i
++
)
{
TensorList
&
tp
=
((
XModel
*
)
targetList
->
GetItem
(
i
))
->
params
;
CheckNTErrors
(
sp
.
count
==
tp
.
count
,
"Incompatiable models!"
);
}
/* the major body of broadcasting */
while
(
1
)
{
for
(
int
i
=
0
;
i
<
sp
.
count
;
i
++
)
{
if
(
source
->
flags
[
i
]
==
PARAM_STATE_UPDATED
)
{
for
(
int
j
=
0
;
j
<
targetList
->
count
;
j
++
)
{
XModel
*
target
=
(
XModel
*
)
targetList
->
GetItem
(
j
);
TensorList
&
tp
=
target
->
params
;
/* data transmit */
BroadcastP2P
(
sp
.
GetItem
(
i
),
tp
.
GetItem
(
i
));
/* update the flag */
target
->
flags
[
i
]
=
PARAM_STATE_UPDATED
;
finished
++
;
}
}
}
if
(
finished
==
sp
.
count
*
targetList
->
count
)
break
;
}
}
/*
wrapper of BroadcastData
>> args - the list of arguments
*/
void
XWorkerBroadcast
::
Broadcast
(
XList
*
args
)
{
XWorkerBroadcast
*
broadcaster
=
(
XWorkerBroadcast
*
)
args
->
GetItem
(
0
);
XModel
*
source
=
(
XModel
*
)
args
->
GetItem
(
1
);
/* target models */
int
targetNum
=
args
->
GetItemInt
(
2
);
XList
target
(
targetNum
);
for
(
int
i
=
0
;
i
<
targetNum
;
i
++
)
{
XModel
*
model
=
(
XModel
*
)
args
->
GetItem
(
3
+
i
);
target
.
Add
(
model
);
}
broadcaster
->
BroadcastData
(
source
,
&
target
,
SLEEP_TIME_IN_BROADCASTING
);
}
/*
P2P data broadcasting
>> source - the source data
>> target - the target data
*/
void
XWorkerBroadcast
::
BroadcastP2P
(
XTensor
*
source
,
XTensor
*
target
)
{
CheckNTErrors
(
source
!=
NULL
,
"The source tensor should not be NULL!"
);
CheckNTErrors
(
target
!=
NULL
,
"The target tensor should not be NULL!"
);
CheckNTErrors
(
IsSameShaped
(
source
,
target
),
"The two tensors should be of the same shape!"
);
CopyValues
(
*
source
,
*
target
);
}
/*
add a new job of broadcasting data
>> source - the data that we want to broadcast
>> targetList - the target places that we recieve the data
*/
bool
XWorkerBroadcast
::
AddJobBroadcast
(
XModel
*
source
,
XList
*
targetList
)
{
CheckNTErrors
(
source
!=
NULL
,
"no input source tensor!"
);
CheckNTErrors
(
targetList
!=
NULL
,
"no input target tensor list!"
);
XList
args
;
args
.
Add
(
this
);
args
.
Add
(
source
);
args
.
AddInt
(
targetList
->
count
);
args
.
AddList
(
targetList
);
queue
.
EnqueueJob
((
void
*
)(
char
*
)
XWorkerBroadcast
::
Broadcast
,
&
args
);
return
true
;
}
}
\ No newline at end of file
source/train/XWorkerBroadcast.h
0 → 100644
查看文件 @
6ec2d28c
/*
* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2016-2021
* Natural Language Processing Lab, Northeastern University
* and
* NiuTrans Research
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* The worker that boradcast the lastest parameters from the server to
* the workers.
*
* $Created by: XIAO Tong (xiaotong@mail.neu.edu.cn) 2021-03-03
* Several visiters will come today, so i have less time for coding.
*/
#ifndef __XWORKERBROADCAST_H__
#define __XWORKERBROADCAST_H__
#include "XWorker.h"
#include "XModel.h"
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
#define SLEEP_TIME_IN_BROADCASTING 10
/*
data broadcasting method
1) point-to-point
*/
enum
DATA_BROADCAST_TYPE
{
DATA_BROADCAST_P2P
};
/* This class defines a broadcaster that transmits parameters from
a server to workers. */
class
XWorkerBroadcast
:
public
XWorker
{
protected
:
DATA_BROADCAST_TYPE
broadcastMode
;
public
:
/* constructor */
XWorkerBroadcast
();
/* de-constructor */
~
XWorkerBroadcast
();
/* set the broadcasting type */
void
SetBroadcastMode
(
DATA_BROADCAST_TYPE
myMode
);
/* broadcast data */
void
BroadcastData
(
XModel
*
source
,
XList
*
targetList
,
long
sleepTime
);
/* wrapper of BroadcastData */
static
void
Broadcast
(
XList
*
args
);
/* P2P data broadcasting */
void
BroadcastP2P
(
XTensor
*
source
,
XTensor
*
target
);
/* add a new job of broadcasting data */
bool
AddJobBroadcast
(
XModel
*
source
,
XList
*
targetList
);
};
}
#endif
\ No newline at end of file
source/train/XWorkerCollect.cpp
查看文件 @
6ec2d28c
...
...
@@ -99,7 +99,6 @@ void XWorkerCollect::CollectData(XList * sourceList, XModel * target, long sleep
}
}
}
}
else
if
(
collectMode
==
DATA_COLLECT_REDUCESUM
)
{
for
(
int
j
=
0
;
j
<
tp
.
count
;
j
++
)
{
...
...
source/train/XWorkerCollect.h
查看文件 @
6ec2d28c
...
...
@@ -44,7 +44,8 @@ data collection method
*/
enum
DATA_COLLECT_TYPE
{
DATA_COLLECT_P2P
,
DATA_COLLECT_REDUCESUM
};
/* The class defines the collecting-data worker */
/* The class defines the collecting-data worker. It collect (gradient) data
from workers for the leader (server). */
class
XWorkerCollect
:
public
XWorker
{
protected
:
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论