Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
8
Issues
8
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
NiuTrans.Tensor
Commits
d69372b3
Commit
d69372b3
authored
Mar 11, 2021
by
xiaotong
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add a new class XParamKeeper
parent
90599e05
隐藏空白字符变更
内嵌
并排
正在显示
7 个修改的文件
包含
125 行增加
和
101 行删除
+125
-101
source/train/TTrain.cpp
+1
-1
source/train/XLeader.cpp
+2
-2
source/train/XModel.cpp
+41
-25
source/train/XModel.h
+29
-4
source/train/XWorkerBroadcast.cpp
+11
-15
source/train/XWorkerCollect.cpp
+32
-41
source/train/XWorkerUpdate.cpp
+9
-13
没有找到文件。
source/train/TTrain.cpp
查看文件 @
d69372b3
...
...
@@ -90,7 +90,7 @@ void TestTrain()
TTModel
model
;
model
.
Init
(
config
,
-
1
);
tmpTT
=
(
XTensor
*
)
model
.
params
[
0
]
;
tmpTT
=
model
.
params
[
0
].
param
;
XOptimizer
optimizer
;
optimizer
.
Init
(
config
);
...
...
source/train/XLeader.cpp
查看文件 @
d69372b3
...
...
@@ -91,8 +91,8 @@ Set the server model. It distributes the server-side parameters on different dev
void
XLeader
::
SetServerModel
(
XConfig
*
config
,
XModel
*
model
,
XList
*
memberModels
)
{
serverModel
.
Clear
();
for
(
int
i
=
0
;
i
<
model
->
param
s
.
count
;
i
++
)
{
XTensor
*
param
=
(
XTensor
*
)
model
->
params
[
i
]
;
for
(
int
i
=
0
;
i
<
model
->
param
Num
;
i
++
)
{
XTensor
*
param
=
model
->
params
[
i
].
param
;
serverModel
.
AddParam
(
param
);
}
...
...
source/train/XModel.cpp
查看文件 @
d69372b3
...
...
@@ -33,17 +33,34 @@
/* the nts (NiuTrans.Tensor) namespace */
namespace
nts
{
/* constructor */
XParamKeeper
::
XParamKeeper
()
{
param
=
NULL
;
flag
=
PARAM_STATE_NOT_READY
;
MUTEX_INIT
(
accessLock
);
MUTEX_INIT
(
trainLock
);
}
/* constructor */
XParamKeeper
::~
XParamKeeper
()
{
MUTEX_DELE
(
accessLock
);
MUTEX_DELE
(
trainLock
);
}
/* constructor */
XModel
::
XModel
()
{
flags
=
NULL
;
params
=
NULL
;
paramNum
=
0
;
MUTEX_INIT
(
modelMutex
);
}
/* de-constructor */
XModel
::~
XModel
()
{
delete
[]
flags
;
Clear
();
MUTEX_DELE
(
modelMutex
);
}
...
...
@@ -51,7 +68,8 @@ XModel::~XModel()
/* clear the model */
void
XModel
::
Clear
()
{
params
.
Clear
();
delete
[]
params
;
paramNum
=
0
;
}
/*
...
...
@@ -104,22 +122,27 @@ add a parameter tensor
void
XModel
::
AddParam
(
XTensor
*
param
)
{
param
->
SetVarFlag
();
params
.
Add
(
param
);
PARAM_STATE
*
newFlags
=
new
PARAM_STATE
[
params
.
count
];
memcpy
(
newFlags
,
flags
,
sizeof
(
PARAM_STATE
)
*
(
params
.
count
-
1
));
newFlags
[
params
.
count
-
1
]
=
PARAM_STATE_NOT_READY
;
XParamKeeper
*
newParams
=
new
XParamKeeper
[
paramNum
+
1
];
for
(
int
i
=
0
;
i
<
paramNum
;
i
++
)
{
newParams
[
i
].
param
=
params
[
i
].
param
;
newParams
[
i
].
flag
=
params
[
i
].
flag
;
}
delete
[]
flags
;
flags
=
newFlags
;
newParams
[
paramNum
].
param
=
param
;
newParams
[
paramNum
].
flag
=
PARAM_STATE_NOT_READY
;
delete
[]
params
;
params
=
newParams
;
paramNum
++
;
}
/* check if the parameters are well-defined for training */
bool
XModel
::
CheckParam
()
{
for
(
int
i
=
0
;
i
<
param
s
.
count
;
i
++
)
{
XTensor
*
param
=
(
XTensor
*
)
params
[
i
]
;
for
(
int
i
=
0
;
i
<
param
Num
;
i
++
)
{
XTensor
*
param
=
params
[
i
].
param
;
if
(
!
param
->
isGrad
)
return
false
;
}
...
...
@@ -130,25 +153,18 @@ bool XModel::CheckParam()
/* initial model for running the it */
void
XModel
::
InitForRun
()
{
for
(
int
i
=
0
;
i
<
params
.
count
;
i
++
)
{
XTensor
*
param
=
(
XTensor
*
)
params
[
i
];
param
->
isGradFinished
=
false
;
flags
[
i
]
=
PARAM_STATE_NOT_READY
;
for
(
int
i
=
0
;
i
<
paramNum
;
i
++
)
{
params
[
i
].
param
->
isGradFinished
=
false
;
params
[
i
].
flag
=
PARAM_STATE_NOT_READY
;
}
}
/* refresh the model */
void
XModel
::
RefreshMe
()
{
for
(
int
i
=
0
;
i
<
params
.
count
;
i
++
)
{
XTensor
*
param
=
params
.
GetItem
(
i
);
param
->
isGradFinished
=
false
;
}
delete
[]
flags
;
flags
=
new
PARAM_STATE
[
params
.
count
];
for
(
int
i
=
0
;
i
<
params
.
count
;
i
++
)
{
flags
[
i
]
=
PARAM_STATE_NOT_READY
;
for
(
int
i
=
0
;
i
<
paramNum
;
i
++
)
{
params
[
i
].
param
->
isGradFinished
=
false
;
params
[
i
].
flag
=
PARAM_STATE_NOT_READY
;
}
}
...
...
source/train/XModel.h
查看文件 @
d69372b3
...
...
@@ -50,6 +50,31 @@ enum PARAM_STATE { PARAM_STATE_NOT_READY,
PARAM_STATE_COLLECTED
,
PARAM_STATE_UPDATED
};
/* parameter keeper */
class
XParamKeeper
{
public
:
/* the parameter */
XTensor
*
param
;
/* the parameter state */
PARAM_STATE
flag
;
/* a mutex for locking and unlocking the parameter */
MUTEX_HANDLE
accessLock
;
/* a mutex of the overall training */
MUTEX_HANDLE
trainLock
;
public
:
/* constructor */
XParamKeeper
();
/* constructor */
~
XParamKeeper
();
};
/* a model template for training */
class
XModel
{
...
...
@@ -58,11 +83,11 @@ protected:
MUTEX_HANDLE
modelMutex
;
public
:
/* the list of model parameters
(pointers to the parameter tensor)
*/
TensorList
params
;
/* the list of model parameters */
XParamKeeper
*
params
;
/*
flags of the parameters
*/
PARAM_STATE
*
flags
;
/*
parameter number
*/
int
paramNum
;
public
:
...
...
source/train/XWorkerBroadcast.cpp
查看文件 @
d69372b3
...
...
@@ -57,20 +57,17 @@ broadcast data for a parameter
*/
void
XWorkerBroadcast
::
BroadcastDataSingle
(
XModel
*
source
,
XList
*
targetList
,
int
pid
)
{
CheckNTErrors
(
source
->
flags
[
pid
]
==
PARAM_STATE_UPDATED
,
CheckNTErrors
(
source
->
params
[
pid
].
flag
==
PARAM_STATE_UPDATED
,
"The parameter is not ready for broadcasting"
);
TensorList
&
sp
=
source
->
params
;
for
(
int
i
=
0
;
i
<
targetList
->
count
;
i
++
)
{
XModel
*
target
=
(
XModel
*
)
targetList
->
GetItem
(
i
);
TensorList
&
tp
=
target
->
params
;
/* data transmit */
BroadcastP2P
(
s
p
.
GetItem
(
pid
),
tp
.
GetItem
(
pid
)
);
BroadcastP2P
(
s
ource
->
params
[
pid
].
param
,
target
->
params
[
pid
].
param
);
/* update the flag */
target
->
flags
[
pid
]
=
PARAM_STATE_UPDATED
;
target
->
params
[
pid
].
flag
=
PARAM_STATE_UPDATED
;
}
}
...
...
@@ -82,21 +79,20 @@ broadcast data for a model
*/
void
XWorkerBroadcast
::
BroadcastData
(
XModel
*
source
,
XList
*
targetList
,
long
sleepTime
)
{
TensorList
&
sp
=
source
->
params
;
int
finished
=
0
;
int
*
finishedFlag
=
new
int
[
s
p
.
count
];
memset
(
finishedFlag
,
0
,
sizeof
(
int
)
*
s
p
.
count
);
int
*
finishedFlag
=
new
int
[
s
ource
->
paramNum
];
memset
(
finishedFlag
,
0
,
sizeof
(
int
)
*
s
ource
->
paramNum
);
/* check */
for
(
int
i
=
0
;
i
<
targetList
->
count
;
i
++
)
{
TensorList
&
tp
=
((
XModel
*
)
targetList
->
GetItem
(
i
))
->
params
;
CheckNTErrors
(
s
p
.
count
==
tp
.
count
,
"Incompatiable models!"
);
XModel
*
target
=
(
XModel
*
)
targetList
->
GetItem
(
i
)
;
CheckNTErrors
(
s
ource
->
paramNum
==
target
->
paramNum
,
"Incompatiable models!"
);
}
/* the major body of broadcasting */
while
(
1
)
{
for
(
int
i
=
0
;
i
<
s
p
.
count
;
i
++
)
{
if
(
source
->
flags
[
i
]
==
PARAM_STATE_UPDATED
&&
finishedFlag
[
i
]
==
0
)
{
for
(
int
i
=
0
;
i
<
s
ource
->
paramNum
;
i
++
)
{
if
(
source
->
params
[
i
].
flag
==
PARAM_STATE_UPDATED
&&
finishedFlag
[
i
]
==
0
)
{
/* broadcasting */
BroadcastDataSingle
(
source
,
targetList
,
i
);
...
...
@@ -107,7 +103,7 @@ void XWorkerBroadcast::BroadcastData(XModel * source, XList * targetList, long s
}
}
if
(
finished
==
s
p
.
count
*
targetList
->
count
)
if
(
finished
==
s
ource
->
paramNum
*
targetList
->
count
)
break
;
XSleep
(
sleepTime
);
...
...
@@ -186,7 +182,7 @@ bool XWorkerBroadcast::AddJobBroadcastSingle(XModel * source, XList * targetList
{
CheckNTErrors
(
source
!=
NULL
,
"no input source tensor!"
);
CheckNTErrors
(
targetList
!=
NULL
,
"no input target tensor list!"
);
CheckNTErrors
(
pid
>=
0
&&
pid
<
source
->
param
s
.
count
,
"illegal parameter index!"
);
CheckNTErrors
(
pid
>=
0
&&
pid
<
source
->
param
Num
,
"illegal parameter index!"
);
XList
args
;
args
.
Add
(
this
);
...
...
source/train/XWorkerCollect.cpp
查看文件 @
d69372b3
...
...
@@ -67,26 +67,25 @@ void XWorkerCollect::UpdateDataAll(XList * memberActive, XList * memberAll, XMod
XOptimizer
*
optimizer
,
XWorkerUpdate
*
updater
,
XWorkerBroadcast
*
broadcaster
,
long
sleepTime
)
{
TensorList
&
tp
=
server
->
params
;
int
finished
=
0
;
for
(
int
j
=
0
;
j
<
tp
.
count
;
j
++
)
server
->
flags
[
j
]
=
PARAM_STATE_NOT_READY
;
for
(
int
j
=
0
;
j
<
server
->
paramNum
;
j
++
)
server
->
params
[
j
].
flag
=
PARAM_STATE_NOT_READY
;
/* check */
for
(
int
i
=
0
;
i
<
memberAll
->
count
;
i
++
)
{
TensorList
&
sp
=
((
XModel
*
)
memberAll
->
GetItem
(
i
))
->
params
;
CheckNTErrors
(
s
p
.
count
==
tp
.
count
,
"Incompatiable models!"
);
XModel
*
source
=
(
XModel
*
)
memberAll
->
GetItem
(
i
)
;
CheckNTErrors
(
s
ource
->
paramNum
==
server
->
paramNum
,
"Incompatiable models!"
);
}
for
(
int
i
=
0
;
i
<
memberActive
->
count
;
i
++
)
{
TensorList
&
sp
=
((
XModel
*
)
memberActive
->
GetItem
(
i
))
->
params
;
CheckNTErrors
(
s
p
.
count
==
tp
.
count
,
"Incompatiable models!"
);
XModel
*
source
=
(
XModel
*
)
memberActive
->
GetItem
(
i
)
;
CheckNTErrors
(
s
ource
->
paramNum
==
server
->
paramNum
,
"Incompatiable models!"
);
}
/* counts how many member models are collect for each parameters */
int
*
finishedCount
=
new
int
[
tp
.
count
];
memset
(
finishedCount
,
0
,
sizeof
(
int
)
*
tp
.
count
);
int
*
finishedCount
=
new
int
[
server
->
paramNum
];
memset
(
finishedCount
,
0
,
sizeof
(
int
)
*
server
->
paramNum
);
/* This is a simple implementation of the wait-and-collect process. But
there is a risk that some models are not available, that is, the
...
...
@@ -94,26 +93,29 @@ void XWorkerCollect::UpdateDataAll(XList * memberActive, XList * memberAll, XMod
to break after waiting for a short time. */
while
(
1
)
{
if
(
collectMode
==
DATA_COLLECT_P2P
)
{
for
(
int
j
=
0
;
j
<
tp
.
count
;
j
++
)
{
for
(
int
j
=
0
;
j
<
server
->
paramNum
;
j
++
)
{
XParamKeeper
&
paramServer
=
server
->
params
[
j
];
/* tp[j]->isGradFinished is true only if the model finishes the computation
(in another process) */
if
(
server
->
flags
[
j
]
!=
PARAM_STATE_NOT_READY
||
!
tp
[
j
]
->
isGradFinished
)
if
(
paramServer
.
flag
!=
PARAM_STATE_NOT_READY
||
!
paramServer
.
param
->
isGradFinished
)
continue
;
/* check if all the models (or part of them) are ready */
for
(
int
i
=
0
;
i
<
memberActive
->
count
;
i
++
)
{
XModel
*
source
=
(
XModel
*
)
memberActive
->
GetItem
(
i
);
TensorList
&
sp
=
source
->
params
;
XParamKeeper
&
paramSource
=
source
->
params
[
j
]
;
/* sp[j]->isGradFinished is true only if the model finishes the computation
(in another process) */
if
(
source
->
flags
[
j
]
==
PARAM_STATE_NOT_READY
&&
sp
[
j
]
->
isGradFinished
)
{
if
(
paramSource
.
flag
==
PARAM_STATE_NOT_READY
&&
paramSource
.
param
->
isGradFinished
)
{
/* data transmit */
CollectP2P
(
sp
[
j
]
->
grad
,
tp
[
j
]
->
grad
);
CollectP2P
(
paramSource
.
param
->
grad
,
paramServer
.
param
->
grad
);
/* reset the flag */
source
->
flags
[
j
]
=
PARAM_STATE_COLLECTED
;
paramSource
.
flag
=
PARAM_STATE_COLLECTED
;
finished
++
;
finishedCount
[
j
]
++
;
...
...
@@ -121,7 +123,7 @@ void XWorkerCollect::UpdateDataAll(XList * memberActive, XList * memberAll, XMod
broadcast the new parameters to member models
(in another thread) */
if
(
finishedCount
[
j
]
==
memberActive
->
count
)
{
server
->
flags
[
j
]
=
PARAM_STATE_COLLECTED
;
paramServer
.
flag
=
PARAM_STATE_COLLECTED
;
if
(
updater
!=
NULL
)
updater
->
AddJobUpdateSingle
(
server
,
memberAll
,
j
,
optimizer
,
broadcaster
);
}
...
...
@@ -133,31 +135,32 @@ void XWorkerCollect::UpdateDataAll(XList * memberActive, XList * memberAll, XMod
}
}
else
if
(
collectMode
==
DATA_COLLECT_REDUCESUM
)
{
for
(
int
j
=
0
;
j
<
tp
.
count
;
j
++
)
{
for
(
int
j
=
0
;
j
<
server
->
paramNum
;
j
++
)
{
bool
ready
=
true
;
XParamKeeper
&
paramServer
=
server
->
params
[
j
];
/* tp[j]->isGradFinished is true only if the model finishes the computation
(in another process) */
if
(
server
->
flags
[
j
]
!=
PARAM_STATE_NOT_READY
||
!
tp
[
j
]
->
isGradFinished
)
if
(
paramServer
.
flag
!=
PARAM_STATE_NOT_READY
||
!
paramServer
.
param
->
isGradFinished
)
continue
;
/* check if all the models (or part of them) are ready */
for
(
int
i
=
0
;
i
<
memberActive
->
count
;
i
++
)
{
XModel
*
source
=
(
XModel
*
)
memberActive
->
GetItem
(
i
);
TensorList
&
sp
=
source
->
params
;
XParamKeeper
&
paramSource
=
source
->
params
[
j
]
;
/* sp[j]->isGradFinished is true only if the model finishes the computation
(in another process) */
if
(
source
->
flags
[
j
]
==
PARAM_STATE_COLLECTED
||
source
->
flags
[
j
]
==
PARAM_STATE_UPDATED
||
!
sp
[
j
]
->
isGradFinished
)
if
(
paramSource
.
flag
==
PARAM_STATE_COLLECTED
||
paramSource
.
flag
==
PARAM_STATE_UPDATED
||
!
paramSource
.
param
->
isGradFinished
)
{
ready
=
false
;
break
;
}
else
if
(
source
->
flags
[
j
]
==
PARAM_STATE_NOT_READY
)
{
source
->
flags
[
j
]
=
PARAM_STATE_READY
;
else
if
(
paramSource
.
flag
==
PARAM_STATE_NOT_READY
)
{
paramSource
.
flag
=
PARAM_STATE_READY
;
}
}
...
...
@@ -166,20 +169,19 @@ void XWorkerCollect::UpdateDataAll(XList * memberActive, XList * memberAll, XMod
for
(
int
i
=
0
;
i
<
memberActive
->
count
;
i
++
)
{
XModel
*
source
=
(
XModel
*
)
memberActive
->
GetItem
(
i
);
TensorList
&
sp
=
source
->
params
;
tensorList
.
Add
(
sp
.
GetItem
(
j
)
->
grad
);
tensorList
.
Add
(
source
->
params
[
j
].
param
->
grad
);
}
/* data transmit */
CollectReduceSum
(
&
tensorList
,
tp
.
GetItem
(
j
)
->
grad
);
CollectReduceSum
(
&
tensorList
,
server
->
params
[
j
].
param
->
grad
);
/* reset the flags */
for
(
int
i
=
0
;
i
<
memberActive
->
count
;
i
++
)
{
XModel
*
source
=
(
XModel
*
)
memberActive
->
GetItem
(
i
);
source
->
flags
[
j
]
=
PARAM_STATE_COLLECTED
;
source
->
params
[
j
].
flag
=
PARAM_STATE_COLLECTED
;
}
server
->
flags
[
j
]
=
PARAM_STATE_COLLECTED
;
server
->
params
[
j
].
flag
=
PARAM_STATE_COLLECTED
;
finished
+=
memberActive
->
count
;
/* we call model update (in another thread) and then
...
...
@@ -194,7 +196,7 @@ void XWorkerCollect::UpdateDataAll(XList * memberActive, XList * memberAll, XMod
}
/* the collection finishes if all data tensors are processed */
if
(
finished
==
tp
.
count
*
memberActive
->
count
)
if
(
finished
==
server
->
paramNum
*
memberActive
->
count
)
break
;
XSleep
(
sleepTime
);
...
...
@@ -333,17 +335,6 @@ bool XWorkerCollect::AddJobCollect(XList * sourceList, XModel * target)
CheckNTErrors
(
sourceList
!=
NULL
,
"no input source model list!"
);
CheckNTErrors
(
target
!=
NULL
,
"no input target model!"
);
/*XList args;
args.Add(this);
args.AddInt(sourceList->count);
args.AddList(sourceList);
args.Add(target);
if (isInstantRun)
XWorkerCollect::Collect(&args);
else
queue.EnqueueJob((void*)(char*)XWorkerCollect::Collect, &args);*/
XList
args
;
args
.
Add
(
this
);
args
.
AddInt
(
sourceList
->
count
);
...
...
source/train/XWorkerUpdate.cpp
查看文件 @
d69372b3
...
...
@@ -63,12 +63,10 @@ update a parameter of a model
void
XWorkerUpdate
::
UpdateParameter
(
XModel
*
server
,
XList
*
members
,
int
pid
,
XOptimizer
*
optimizer
,
XWorkerBroadcast
*
broadcaster
)
{
TensorList
&
params
=
server
->
params
;
PARAM_STATE
*
flags
=
server
->
flags
;
CheckNTErrors
(
flags
[
pid
]
==
PARAM_STATE_COLLECTED
,
"The state of the parameter is wrong!"
);
CheckNTErrors
(
server
->
params
[
pid
].
flag
==
PARAM_STATE_COLLECTED
,
"The state of the parameter is wrong!"
);
XTensor
*
param
=
params
.
GetItem
(
pid
)
;
XTensor
*
param
=
server
->
params
[
pid
].
param
;
XTensor
*
grad
=
param
->
grad
;
CheckNTErrors
(
grad
!=
NULL
,
"No gradient!"
);
...
...
@@ -77,7 +75,7 @@ void XWorkerUpdate::UpdateParameter(XModel * server, XList * members, int pid,
optimizer
->
UpdateParam
(
param
,
grad
,
pid
);
/* set the flag */
flags
[
pid
]
=
PARAM_STATE_UPDATED
;
server
->
params
[
pid
].
flag
=
PARAM_STATE_UPDATED
;
/* broadcast the new parameter to other models (in anotehr worker/thread) */
broadcaster
->
AddJobBroadcastSingle
(
server
,
members
,
pid
);
...
...
@@ -92,15 +90,13 @@ update the model
void
XWorkerUpdate
::
UpdateModel
(
XModel
*
model
,
XOptimizer
*
optimizer
,
long
sleepTime
)
{
int
finished
=
0
;
TensorList
&
params
=
model
->
params
;
PARAM_STATE
*
flags
=
model
->
flags
;
optimizer
->
Prepare
(
model
);
while
(
1
)
{
for
(
int
i
=
0
;
i
<
params
.
count
;
i
++
)
{
if
(
flags
[
i
]
==
PARAM_STATE_COLLECTED
)
{
XTensor
*
param
=
params
.
GetItem
(
i
)
;
for
(
int
i
=
0
;
i
<
model
->
paramNum
;
i
++
)
{
if
(
model
->
params
[
i
].
flag
==
PARAM_STATE_COLLECTED
)
{
XTensor
*
param
=
model
->
params
[
i
].
param
;
XTensor
*
grad
=
param
->
grad
;
CheckNTErrors
(
grad
!=
NULL
,
"No gradient!"
);
...
...
@@ -109,12 +105,12 @@ void XWorkerUpdate::UpdateModel(XModel * model, XOptimizer * optimizer, long sle
optimizer
->
UpdateParam
(
param
,
grad
,
i
);
/* set the flag */
flags
[
i
]
=
PARAM_STATE_UPDATED
;
model
->
params
[
i
].
flag
=
PARAM_STATE_UPDATED
;
finished
++
;
}
}
if
(
finished
==
params
.
count
)
if
(
finished
==
model
->
paramNum
)
break
;
XSleep
(
sleepTime
);
...
...
@@ -182,7 +178,7 @@ bool XWorkerUpdate::AddJobUpdateSingle(XModel * model, XList * members, int pid,
CheckNTErrors
(
members
!=
NULL
,
"No member model list!"
);
CheckNTErrors
(
optimizer
!=
NULL
,
"No optimizer!"
);
CheckNTErrors
(
broadcaster
!=
NULL
,
"No broadcaster!"
);
CheckNTErrors
(
pid
>=
0
&&
pid
<
model
->
param
s
.
count
,
"Illegal parameter index!"
);
CheckNTErrors
(
pid
>=
0
&&
pid
<
model
->
param
Num
,
"Illegal parameter index!"
);
XList
args
;
args
.
Add
(
this
);
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论