Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
T
Toy-MT-Introduction
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
Toy-MT-Introduction
Commits
a4c74d65
Commit
a4c74d65
authored
May 16, 2020
by
xiaotong
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
updates
parent
c2ec56e4
隐藏空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
1 行增加
和
1 行删除
+1
-1
Book/Chapter1/chapter1.tex
+1
-1
没有找到文件。
Book/Chapter1/chapter1.tex
查看文件 @
a4c74d65
...
...
@@ -188,7 +188,7 @@
\parinterval
今天,神经机器翻译已经成为新的范式,大有全面替代统计机器翻译之势。比如,从世界上著名的机器翻译比赛WMT和CCMT中就可以看出这个趋势。如图
\ref
{
fig:1-6
}
所示,其中左图是WMT19全球机器翻译比赛的参赛队伍的截图,这些参赛队伍基本上都在使用深度学习完成机器翻译的建模。而在WMT19各个项目夺冠系统中(
\ref
{
fig:1-6
}
右图),神经机器翻译也几乎一统天下。
\parinterval
值得一提的是,近些年神经机器翻译的快速发展也得益于产业界的关注。各大互联网企业和机器翻译技术研发机构都对神经机器翻译的模型和实践方法给予了很大贡献。比如,谷歌,微软、百度、搜狗、腾讯、阿里、有道、小牛翻译等企业凭借自身人才和基础设施方面的优势,先后推出了以神经机器翻译为内核的产品及服务,相关技术方法已经在大规模应用中得到验证,大大推动了机器翻译的产业化进程,而且这种趋势在不断加强,机器翻译的前景也更加宽广。
\parinterval
值得一提的是,近些年神经机器翻译的快速发展也得益于产业界的关注。各大互联网企业和机器翻译技术研发机构都对神经机器翻译的模型和实践方法给予了很大贡献。比如,谷歌,微软、百度、搜狗、
金山、
腾讯、阿里、有道、小牛翻译等企业凭借自身人才和基础设施方面的优势,先后推出了以神经机器翻译为内核的产品及服务,相关技术方法已经在大规模应用中得到验证,大大推动了机器翻译的产业化进程,而且这种趋势在不断加强,机器翻译的前景也更加宽广。
%----------------------------------------------
\begin{figure}
[htp]
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论