Commit e5ecc3de by xiaotong

more pages

parent dbe871f1
......@@ -862,7 +862,104 @@ GPT-2 (Transformer) & Radford et al. & 2019 & \alert{35.7}
%%% 神经网络的作用
\begin{frame}{神经网络:线性变换 + 激活函数}
\begin{itemize}
\item 对于向量$\textbf{x} \in \mathbb{R}^m$,一层神经网络实际上就是把
\item 对于向量$\textbf{x} \in \mathbb{R}^m$,一层神经网络首先把他经过\textbf{\alert{线性变换}}映射到$\mathbb{R}^m$,之后经过\textbf{{\color{blue}激活函数}}变换成$\textbf{y} \in \mathbb{R}^n$
\end{itemize}
\begin{center}
\begin{tikzpicture}
\node [anchor=center] (y) at (0,0) {\Large{$\textbf{y}$}};
\node [anchor=west] (eq) at (y.east) {\Large{$=$}};
\node [anchor=west] (func) at (eq.east) {\Large{$f$}};
\node [anchor=west] (brace01) at (func.east) {\Large{$($}};
\node [anchor=west] (x) at (brace01.east) {\Large{$\textbf{x}$}};
\node [anchor=west] (dot) at (x.east) {\Large{$\cdot$}};
\node [anchor=west] (w) at (dot.east) {\Large{$\textbf{w}$}};
\node [anchor=west] (plus) at (w.east) {\Large{$+$}};
\node [anchor=west] (b) at (plus.east) {\Large{$\textbf{b}$}};
\node [anchor=west] (brace02) at (b.east) {\Large{$)$}};
\node [anchor=center,fill=blue!20] (func2) at (func) {\LARGE{$f$}};
\node [anchor=north] (funclabel) at ([yshift=-1.1em]func.south) {\blue{激活函数}};
\draw [<-] ([yshift=-0.2em]func2.south) -- (funclabel.north);
\begin{pgfonlayer}{background}
\node [rectangle,inner sep=0.2em,fill=red!20] [fit = (x) (w) (b)] (linear) {};
\node [anchor=north] (linearlabel) at ([yshift=-1.1em]linear.south) {\alert{线性变换}};
\draw [<-] ([yshift=-0.2em]linear.south) -- (linearlabel.north);
\end{pgfonlayer}
\end{tikzpicture}
\end{center}
\end{frame}
%%%------------------------------------------------------------------------------------------------------------
%%% 线性变换
\begin{frame}{线性变换}
\begin{itemize}
\item 对于线性空间$V$,任意$\textbf{a}$$\textbf{b} \in V$和数域中的任意$\alpha$,线性变换$T(\cdot)$需满足
\begin{eqnarray}
T(\textbf{a} + \textbf{b}) & = & T(\textbf{a}) + T(\textbf{b}) \nonumber \\
T(\alpha \textbf{a}) & = & \alpha T(\textbf{a}) \nonumber
\end{eqnarray}
\item<2-> 线性变换的一种几何解释:
\end{itemize}
\vspace{-1em}
\visible<2->{
\begin{center}
\begin{tikzpicture}
\node [anchor=west] (x) at (0,0) {\Large{$\textbf{x}$}};
\node [anchor=west] (dot) at (x.east) {\Large{$\cdot$}};
\node [anchor=west] (w) at (dot.east) {\Large{$\textbf{w}$}};
\node [anchor=west] (plus) at (w.east) {\Large{$+$}};
\node [anchor=west] (b) at (plus.east) {\Large{$\textbf{b}$}};
\visible<3->{
\node [anchor=center,fill=green!20] (w2) at (w) {\Large{$\textbf{w}$}};
\node [anchor=north,inner sep=1pt] (wlabel) at ([yshift=-0.7em]w.south) {\small{旋转(rotation)}};
\draw [<-] ([yshift=-0.2em]w2.south) -- (wlabel.north);
}
\visible<4->{
\node [anchor=center,fill=purple!20] (b2) at (b) {\Large{$\textbf{b}$}};
\node [anchor=west] (blabel) at ([xshift=1.5em]b2.east) {平移(shift)};
\draw [<-] ([xshift=0.2em]b2.east) -- (blabel.west);
}
\end{tikzpicture}
\end{center}
}
\end{frame}
%%%------------------------------------------------------------------------------------------------------------
%%% 线性变换:更复杂的实例
\begin{frame}{线性变换(续)}
\begin{itemize}
\item 线性变换也适用于更加复杂的情况,这也给神经网络提供了拟合不同数据分布的能力
\end{itemize}
\end{frame}
%%%------------------------------------------------------------------------------------------------------------
%%% 激活函数
\begin{frame}{激活函数}
\begin{itemize}
\item 激活函数的设计更多的是为了进行\alert{非线性}变换
\begin{itemize}
\item 很多实际问题都是非线性的
\item 非线性部分提供了拟合任意函数的能力(稍后介绍)
\end{itemize}
\end{itemize}
\end{frame}
%%%------------------------------------------------------------------------------------------------------------
%%% 常用的激活函数
\begin{frame}{常用的激活函数}
\begin{itemize}
\item 好多好多,列举不全 ...
\end{itemize}
\end{frame}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论