Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
T
Toy-MT-Introduction
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
Toy-MT-Introduction
Commits
e86c48f4
Commit
e86c48f4
authored
May 23, 2020
by
单韦乔
Browse files
Options
Browse Files
Download
Plain Diff
合并分支 'shanweiqiao' 到 'caorunzhe'
更新 Chapter7.tex 查看合并请求
!254
parents
a779e636
d1543fd1
隐藏空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
2 行增加
和
2 行删除
+2
-2
Book/Chapter7/Chapter7.tex
+2
-2
没有找到文件。
Book/Chapter7/Chapter7.tex
查看文件 @
e86c48f4
...
...
@@ -1524,7 +1524,7 @@ p_l=\frac{l}{2L}\cdot \varphi
% NEW SUB-SECTION
%----------------------------------------------------------------------------------------
\subsection
{
单语数据的使用
}
\label
{
subsection-
4
.2.6
}
\subsection
{
单语数据的使用
}
\label
{
subsection-
7
.2.6
}
\parinterval
在统计机器翻译时代,使用单语数据训练语言模型就是构建机器翻译系统的关键步骤。好的语言模型往往会带来性能的增益。而这个现象在神经机器翻译中似乎并不明显,因为在大多数神经机器翻译的范式中,并不要求使用大规模单语数据来帮助机器翻译系统。甚至,连语言模型都不会作为一个独立的模块。这一方面是由于神经机器翻译系统的解码端本身就起着语言模型的作用,另一方面是由于数据的增多使得翻译模型可以更好的捕捉目标语言的规律。
...
...
@@ -1672,7 +1672,7 @@ p_l=\frac{l}{2L}\cdot \varphi
\begin{itemize}
\vspace
{
0.5em
}
\item
``知识''在模型间是可迁移的。也就是说,一个模型中蕴含的规律可以被另一个模型使用。最典型的例子就是预训练模型(见
\ref
{
subsection-
4
.2.6
}
)。使用单语数据学习到的表示模型,在双语的翻译任务中仍然可以发挥很好的作用。也就是,把单语语言模型学习到的知识迁移到双语翻译中对句子表示的任务中;
\item
``知识''在模型间是可迁移的。也就是说,一个模型中蕴含的规律可以被另一个模型使用。最典型的例子就是预训练模型(见
\ref
{
subsection-
7
.2.6
}
)。使用单语数据学习到的表示模型,在双语的翻译任务中仍然可以发挥很好的作用。也就是,把单语语言模型学习到的知识迁移到双语翻译中对句子表示的任务中;
\vspace
{
0.5em
}
\item
模型所蕴含的``知识''比原始数据中的``知识''更容易被学习到。比如,机器翻译中大量使用的回译(伪数据)方法,就把模型的输出作为数据让系统进行学习。
\vspace
{
0.5em
}
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论