Commit fbcf0a02 by 曹润柘

更新 Chapter3.tex

parent bbddcc4f
......@@ -690,7 +690,7 @@ g(\mathbf{s},\mathbf{t}) \equiv \prod_{j,i \in \widehat{A}}{\textrm{P}(s_j,t_i)}
\vspace{0.5em}
\item 根据译文$\mathbf{t}$选择源文$\mathbf{s}$的长度$m$,用$\textrm{P}(m|\mathbf{t})$表示;
\vspace{0.5em}
\item 当确定源语言句子的长度$m$后,循环每个位置$j$逐次生成每个源语言单词$s_j$,也就是$\prod_{j=1}^m$计算的内容;
\item 当确定源语言句子的长度$m$后,循环每个位置$j$逐次生成每个源语言单词$s_j$,也就是$\prod_{j=1}^m \cdot$计算的内容;
\vspace{0.5em}
\item 对于每个位置$j$,根据译文$\mathbf{t}$、源文长度$m$、已经生成的源语言单词$s_1^{j-1}$和对齐$a_1^{j-1}$,生成第$j$个位置的对齐结果$a_j$,用$\textrm{P}(a_j|a_1^{j-1},s_1^{j-1},m,\mathbf{t})$表示;
\vspace{0.5em}
......@@ -790,7 +790,7 @@ g(\mathbf{s},\mathbf{t}) \equiv \prod_{j,i \in \widehat{A}}{\textrm{P}(s_j,t_i)}
\label{eq:3-23}
\end{eqnarray}
\parinterval 在公式\ref{eq:3-23}中,需要遍历所有的词对齐,即$ \sum_{\mathbf{a}}{\cdot}$。但这种表示不够直观,因此可以把这个过程重新表示为下形式:
\parinterval 在公式\ref{eq:3-23}中,需要遍历所有的词对齐,即$ \sum_{\mathbf{a}}{\cdot}$。但这种表示不够直观,因此可以把这个过程重新表示为下形式:
\begin{eqnarray}
\textrm{P}(\mathbf{s}|\mathbf{t})={\sum_{a_1=0}^{l}\cdots}{\sum_{a_m=0}^{l}\frac{\varepsilon}{(l+1)^m}}{\prod_{j=1}^{m}f(s_j|t_{a_j})}
\label{eq:3-24}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论