Commit 0485fffa by 单韦乔

前两章

parent dd54cb78
......@@ -52,7 +52,7 @@
}
{
\begin{scope}[xshift=1.7in]
\begin{scope}[xshift=2in]
{\scriptsize
\node [anchor=north west] (phrase1) at (0,0) {$\textrm{Pr}(\textrm{} \to \textrm{I}) = 0.7$};
\node [anchor=north west] (phrase2) at ([yshift=0.1em]phrase1.south west) {$\textrm{Pr}(\textrm{} \to \textrm{me}) = 0.3$};
......@@ -76,7 +76,7 @@
}
{
\begin{scope}[xshift=1.7in,yshift=-1.55in]
\begin{scope}[xshift=2in,yshift=-1.55in]
{\scriptsize
\node [anchor=north west] (ngram1) at (0,0) {$\textrm{Pr}(\textrm{I}) = 0.0001$};
\node [anchor=north west] (ngram2) at ([yshift=0.0em]ngram1.south west) {$\textrm{Pr}(\textrm{I}\ \textrm{am}) = 0.623$};
......@@ -96,14 +96,14 @@
}
{
\draw[->,thick,ublue] (bidata.east)--([xshift=2.2em]bidata.east) node[pos=0.5,above] (simexample) {\color{red}{\scriptsize{\scriptsize{学习}}}};
\draw[->,thick,ublue] (bidata.east)--([xshift=4.2em]bidata.east) node[pos=0.5,above] (simexample) {\color{red}{\scriptsize{\scriptsize{学习}}}};
}
{
\draw[->,thick,ublue] (monodata.east)--([xshift=2.2em]monodata.east) node[pos=0.5,above] (simexample) {\color{red}{\scriptsize{\scriptsize{学习}}}};
\draw[->,thick,ublue] (monodata.east)--([xshift=4.2em]monodata.east) node[pos=0.5,above] (simexample) {\color{red}{\scriptsize{\scriptsize{学习}}}};
}
\begin{scope}[xshift=3.6in]
\begin{scope}[xshift=4in]
{\footnotesize
{
\node[anchor=center] (srcsentence) at (0,0) {我 对 你 感到 满意};
......
......@@ -129,7 +129,7 @@
\parinterval 1957年,Noam Chomsky在\emph{Syntactic Structures}中描述了转换生成语法\upcite{chomsky1957syntactic},并使用数学方法来研究自然语言,建立了包括上下文有关语法、上下文无关语法等4种类型的语法。这些工作最终为今天计算机中广泛使用的“形式语言”奠定了基础。而他的思想也深深地影响了同时期的语言学和自然语言处理领域的学者。特别的是,早期基于规则的机器翻译中也大量使用了这些思想。
\parinterval 虽然在这段时间,使用机器进行翻译的议题越加火热,但是事情并不总是一帆风顺,怀疑论者对机器翻译一直存有质疑,并很容易找出一些机器翻译无法解决的问题。自然地,人们也期望能够客观地评估一下机器翻译的可行性。当时美国基金资助组织委任自动语言处理咨询会承担了这项任务。经过近两年的调查与分析,该委员会于1966年11月公布了一个题为\emph{LANGUAGE AND MACHINES}的报告(图\ref{fig:1-5}),即ALPAC报告。该报告全面否定了机器翻译的可行性,为机器翻译的研究泼了一盆冷水。
\parinterval 虽然在这段时间,使用机器进行翻译的议题越加火热,但是事情并不总是一帆风顺,怀疑论者对机器翻译一直存有质疑,并很容易找出一些机器翻译无法解决的问题。自然地,人们也期望能够客观地评估一下机器翻译的可行性。当时美国基金资助组织委任自动语言处理咨询会承担了这项任务。经过近两年的调查与分析,该委员会于1966年11月公布了一个题为\emph{LANGUAGE AND MACHINES}的报告(图\ref{fig:1-4}),即ALPAC报告。该报告全面否定了机器翻译的可行性,为机器翻译的研究泼了一盆冷水。
%----------------------------------------------
\begin{figure}[htp]
......@@ -258,8 +258,6 @@
\parinterval 规则就像语言中的“If-then”语句,如果满足条件,则执行相应的语义动作。比如,可以将待翻译句子中的某个词,使用目标语言单词进行替换,但是这种替换并非随意的,而是在语言学知识的指导下进行的。
\parinterval\ref{fig:1-8}展示了一个使用转换法进行翻译的实例。这里,利用一个简单的汉译英规则库完成对句子“我对你感到满意”的翻译。当翻译“我”时,从规则库中找到规则1,该规则表示遇到单词“我”就翻译为“I”;类似地,也可以从规则库中找到规则4,该规则表示翻译调序,即将单词“you”放到“be satisfied with”后面。这种通过规则表示单词之间的对应关系也为统计机器翻译方法提供了思路。如统计机器翻译中,基于短语的翻译模型使用短语对对原文进行替换,详细描述可以参考{\chapterseven}
%----------------------------------------------
\begin{figure}[htp]
\centering
......@@ -269,7 +267,7 @@
\end{figure}
%-------------------------------------------
\parinterval 在上述例子中可以发现,规则不仅仅可以翻译句子之间单词的对应,如规则1,还可以表示句法甚至语法之间的对应,如规则6。因此基于规则的方法可以分成多个层次,如图\ref{fig:1-9}所示。图中不同的层次表示采用不同的知识来书写规则,进而完成机器翻译过程。对于翻译问题,可以构建不同层次的基于规则的机器翻译系统。这里包括四个层次,分别为:词汇转换、句法转换、语义转换和中间语言层。其中,上层可以继承下层的翻译知识,比如说句法转换层会利用词汇转换层知识。早期基于规则的方法属于词汇转换层
\parinterval \ref{fig:1-8}展示了一个使用转换法进行翻译的实例。这里,利用一个简单的汉译英规则库完成对句子“我对你感到满意”的翻译。当翻译“我”时,从规则库中找到规则1,该规则表示遇到单词“我”就翻译为“I”;类似地,也可以从规则库中找到规则4,该规则表示翻译调序,即将单词“you”放到“be satisfied with”后面。这种通过规则表示单词之间的对应关系也为统计机器翻译方法提供了思路。如统计机器翻译中,基于短语的翻译模型使用短语对对原文进行替换,详细描述可以参考{\chapterseven}
%----------------------------------------------
\begin{figure}[htp]
......@@ -281,6 +279,8 @@
\end{figure}
%-------------------------------------------
\parinterval 在上述例子中可以发现,规则不仅仅可以翻译句子之间单词的对应,如规则1,还可以表示句法甚至语法之间的对应,如规则6。因此基于规则的方法可以分成多个层次,如图\ref{fig:1-9}所示。图中不同的层次表示采用不同的知识来书写规则,进而完成机器翻译过程。对于翻译问题,可以构建不同层次的基于规则的机器翻译系统。这里包括四个层次,分别为:词汇转换、句法转换、语义转换和中间语言层。其中,上层可以继承下层的翻译知识,比如说句法转换层会利用词汇转换层知识。早期基于规则的方法属于词汇转换层。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
%----------------------------------------------------------------------------------------
......
\definecolor{ublue}{rgb}{0.152,0.250,0.545}
\begin{tikzpicture}
\begin{axis}[
width=11cm,
width=13cm,
height=5.5cm,
xlabel={WikiText-103上的词表},
ylabel={词汇出现总次数},
......
......@@ -862,9 +862,6 @@ c(\cdot) & \textrm{当计算最高阶模型时} \\
\parinterval 当任务对单词序列长度没有限制时,上述两种方法枚举出的单词序列也是无穷无尽的。因此这两种枚举策略并不具备完备性而且会导致枚举过程无法停止。由于日常生活中通常不会见到特别长的句子,因此可以通过限制单词序列的最大长度来避免这个问题。一旦单词序列的最大长度被确定,以上两种枚举策略就可以在一定时间内枚举出所有可能的单词序列,因而一定可以找到最优的单词序列,即具备最优性。
\parinterval 此时上述生成策略虽然可以满足完备性和最优性,但其仍然算不上是优秀的生成策略,因为这两种算法在时间复杂度和空间复杂度上的表现很差,如表\ref{tab:2-4}所示。其中$|V|$为词表大小,$m$ 为序列长度。值得注意的是,在之前的遍历过程中,除了在序列开头一定会挑选<sos>之外,其他位置每次可挑选的单词并不只有词表中的单词,还有结束符号<eos>,因此实际上生成过程中每个位置的单词候选数量为$|V|+1$
\vspace{0.5em}
%------------------------------------------------------
\begin{table}[htp]{
\begin{center}
......@@ -881,6 +878,8 @@ c(\cdot) & \textrm{当计算最高阶模型时} \\
}\end{table}
%------------------------------------------------------
\parinterval 此时上述生成策略虽然可以满足完备性和最优性,但其仍然算不上是优秀的生成策略,因为这两种算法在时间复杂度和空间复杂度上的表现很差,如表\ref{tab:2-4}所示。其中$|V|$为词表大小,$m$ 为序列长度。值得注意的是,在之前的遍历过程中,除了在序列开头一定会挑选<sos>之外,其他位置每次可挑选的单词并不只有词表中的单词,还有结束符号<eos>,因此实际上生成过程中每个位置的单词候选数量为$|V|+1$
\parinterval 那么是否有比枚举策略更高效的方法呢?答案是肯定的。一种直观的方法是将搜索的过程表示成树型结构,称为解空间树。它包含了搜索过程中可生成的全部序列。该树的根节点恒为<sos>,代表序列均从<sos> 开始。该树结构中非叶子节点的兄弟节点有$|V|+1$个,由词表和结束符号<eos>构成。从图\ref{fig:2-13}可以看到,对于一个最大长度为4的序列的搜索过程,生成某个单词序列的过程实际上就是访问解空间树中从根节点<sos> 开始一直到叶子节点<eos>结束的某条路径,而这条的路径上节点按顺序组成了一段独特的单词序列。此时对所有可能单词序列的枚举就变成了对解空间树的遍历。并且枚举的过程与语言模型打分的过程也是一致的,每枚举一个词$i$也就是在图\ref{fig:2-13}选择$w_i$一列的一个节点,语言模型就可以为当前的树节点$w_i$给出一个分值,即$\funp{P}(w_i | w_1 w_2 \ldots w_{i-1})$。对于$n$-gram语言模型,这个分值可以表示为$\funp{P}(w_i | w_1 w_2 \ldots w_{i-1})=\funp{P}(w_i | w_{i-n+1} \ldots w_{i-1})$
%----------------------------------------------
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论