Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
M
mtbookv2
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
mtbookv2
Commits
07bcff47
Commit
07bcff47
authored
4 years ago
by
曹润柘
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
更新 chapter16.tex
parent
960390bb
隐藏空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
11 行增加
和
0 行删除
+11
-0
Chapter16/chapter16.tex
+11
-0
没有找到文件。
Chapter16/chapter16.tex
查看文件 @
07bcff47
...
...
@@ -585,6 +585,17 @@ Joint training for neural machine translation models with monolingual data
\end{itemize}
%----------------------------------------------------------------------------------------
% NEW SECTION
%----------------------------------------------------------------------------------------
\section
{
无监督机器翻译
}
\parinterval
低资源机器翻译的一种极端情况是:没有任何可以用于模型训练的双语平行数据。一种思路是借用多语言翻译方面的技术(XXX节),利用基于中介语或者零样本学习的方法构建翻译系统。但是,这类方法仍然需要多个语种的平行数据。对于某一个语言对,在只有源语言和目标语言单语数据的前提下,是否仍然可以训练一个有效的翻译模型呢?我们称这种不需要双语数据的机器翻译方法为
{
\small\bfnew
{
无监督机器翻译
}}
\index
{
无监督机器翻译
}
(Un-supervised Machine Translation
\index
{
Un-supervised Machine Translation
}
)。
\parinterval
直接进行无监督机器翻译是困难的。一个简单可行的思路是先把问题进行分解,然后分别解决各个子问题,最后形成完整的解决方案。放到无监督机器翻译里面,可以首先使用无监督方法寻找词与词之间的翻译,然后在这基础上,进一步得到句子到句子的翻译模型。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
%----------------------------------------------------------------------------------------
...
...
This diff is collapsed.
Click to expand it.
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论