Commit 0a9f6054 by xiaotong

Merge branch 'master' of 47.105.50.196:NiuTrans/mtbookv2

parents 7f72d109 dedf67b1
......@@ -555,7 +555,7 @@ F(x)=\int_{-\infty}^x f(x)\textrm{d}x
\subsection{参数估计和平滑算法}
对于$n$-gram语言模型,每个$\funp{P}(w_m|w_{m-n+1} \ldots w_{m-1})$都可以被看作是模型的{\small\bfnew{参数}}\index{参数}(Parameter\index{参数})。而$n$-gram语言模型的一个核心任务是估计这些参数的值,即{\small\bfnew{参数估计}}\index{参数估计}(Parameter Estimation\index{Parameter Estimation}。通常,参数估计可以通过在数据上的统计得到。一种简单的方法是:给定一定数量的句子,统计每个$n$-gram 出现的频次,并利用公式\ref{eq:2-24}得到每个参数$\funp{P}(w_m|w_{m-n+1} \ldots w_{m-1})$的值。这个过程也被称作模型的{\small\bfnew{训练}}\index{训练}(Training\index{训练})。对于自然语言处理任务来说,统计模型的训练是至关重要的。在本书后面的内容中也会看到,不同的问题可能需要不同的模型以及不同的模型训练方法。而很多研究工作也都集中在优化模型训练的效果上。
对于$n$-gram语言模型,每个$\funp{P}(w_m|w_{m-n+1} \ldots w_{m-1})$都可以被看作是模型的{\small\bfnew{参数}}\index{参数}(Parameter\index{Parameter})。而$n$-gram语言模型的一个核心任务是估计这些参数的值,即参数估计。通常,参数估计可以通过在数据上的统计得到。一种简单的方法是:给定一定数量的句子,统计每个$n$-gram 出现的频次,并利用公式\ref{eq:2-24}得到每个参数$\funp{P}(w_m|w_{m-n+1} \ldots w_{m-1})$的值。这个过程也被称作模型的{\small\bfnew{训练}}\index{训练}(Training\index{训练})。对于自然语言处理任务来说,统计模型的训练是至关重要的。在本书后面的内容中也会看到,不同的问题可能需要不同的模型以及不同的模型训练方法。而很多研究工作也都集中在优化模型训练的效果上。
\parinterval 回到$n$-gram语言模型上。前面所使用的参数估计方法并不完美,因为它无法很好的处理低频或者未见现象。比如,在式\ref{eq:2-25}所示的例子中,如果语料中从没有“确实”和“现在”两个词连续出现的情况,即$\textrm{count}(\textrm{确实}\ \textrm{现在})=0$。 那么使用2-gram 计算句子“确实/现在/数据/很多”的概率时,会出现如下情况
\begin{eqnarray}
......@@ -1051,7 +1051,7 @@ c_{\textrm{KN}}(\cdot) = \left\{\begin{array}{ll}
\vspace{0.5em}
\item 本章更多地关注了语言模型的基本问题和求解思路,但是基于$n$-gram的方法并不是语言建模的唯一方法。从现在自然语言处理的前沿看,端到端的深度学习方法在很多任务中都取得了领先的性能。语言模型同样可以使用这些方法\upcite{jing2019a},而且在近些年取得了巨大成功。例如,最早提出的前馈神经语言模型\upcite{bengio2003a}和后来的基于循环单元的语言模型\upcite{mikolov2010recurrent}、基于长短期记忆单元的语言模型\upcite{sundermeyer2012lstm}以及现在非常流行的Transformer\upcite{vaswani2017attention}。 关于神经语言模型的内容,会在{\chapternine}进行进一步介绍。
\vspace{0.5em}
\item 最后,本章结合语言模型的序列生成任务对搜索技术进行了介绍。类似地,机器翻译任务也需要从大量的翻译后选中快速寻找最优译文。因此在机器翻译任务中也使用了搜索方法,这个过程通常被称作{\small\bfnew{解码}}\index{解码}(Decoding)\index{Decoding}。例如,有研究者在基于词的翻译模型中尝试使用启发式搜索\upcite{DBLP:conf/acl/OchUN01,DBLP:conf/acl/WangW97,tillmann1997a}以及贪婪搜索方法\upcite{germann2001fast}\upcite{germann2003greedy},也有研究者研究基于短语的栈解码方法\upcite{Koehn2007Moses,DBLP:conf/amta/Koehn04}。此外,解码方法还包括有限状态机解码\upcite{bangalore2001a}\upcite{bangalore2000stochastic}以及基于语言学约束的解码\upcite{venugopal2007an,zollmann2007the,liu2006tree,galley2006scalable,chiang2005a}。相关内容将在{\chaptereight}{\chapterfourteen} 进行介绍。
\item 最后,本章结合语言模型的序列生成任务对搜索技术进行了介绍。类似地,机器翻译任务也需要从大量的翻译后选中快速寻找最优译文。因此在机器翻译任务中也使用了搜索方法,这个过程通常被称作{\small\bfnew{解码}}\index{解码}(Decoding)\index{Decoding}。例如,有研究者在基于词的翻译模型中尝试使用启发式搜索\upcite{DBLP:conf/acl/OchUN01,DBLP:conf/acl/WangW97,tillmann1997a}以及贪婪搜索方法\upcite{germann2001fast}\upcite{germann2003greedy},也有研究者研究基于短语的栈解码方法\upcite{Koehn2007Moses,DBLP:conf/amta/Koehn04}。此外,解码方法还包括有限状态机解码\upcite{bangalore2001a}\upcite{DBLP:journals/mt/BangaloreR02}以及基于语言学约束的解码\upcite{venugopal2007an,zollmann2007the,liu2006tree,galley2006scalable,chiang2005a}。相关内容将在{\chaptereight}{\chapterfourteen} 进行介绍。
\vspace{0.5em}
\end{itemize}
\end{adjustwidth}
......@@ -50,7 +50,7 @@ IBM模型由Peter F. Brown等人于上世纪九十年代初提出\cite{DBLP:jour
\end{figure}
%----------------------------------------------
\parinterval 上面的例子反映了人在做翻译时所使用的一些知识:首先,两种语言单词的顺序可能不一致,而且译文需要符合目标语的习惯,这也就是常说的翻译的{\small\sffamily\bfseries{流畅度}}\index{流畅度}问题(Fluency)\index{Fluency};其次,源语言单词需要准确的被翻译出来,也就是常说的翻译的{\small\sffamily\bfseries{准确性}}\index{准确性}(Accuracy)\index{Accuracy}问题和{\small\sffamily\bfseries{充分性}}\index{充分性}(Adequacy)\index{Adequacy}问题。为了达到以上目的,传统观点认为翻译过程需要包含三个步骤\cite{jurafsky2000speech}
\parinterval 上面的例子反映了人在做翻译时所使用的一些知识:首先,两种语言单词的顺序可能不一致,而且译文需要符合目标语的习惯,这也就是常说的翻译的{\small\sffamily\bfseries{流畅度}}\index{流畅度}问题(Fluency)\index{Fluency};其次,源语言单词需要准确的被翻译出来,也就是常说的翻译的{\small\sffamily\bfseries{准确性}}\index{准确性}(Accuracy)\index{Accuracy}问题和{\small\sffamily\bfseries{充分性}}\index{充分性}(Adequacy)\index{Adequacy}问题。为了达到以上目的,传统观点认为翻译过程需要包含三个步骤\cite{parsing2009speech}
\begin{itemize}
\vspace{0.5em}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论