Commit 0b27b5c7 by 曹润柘

合并分支 'caorunzhe' 到 'master'

Caorunzhe

查看合并请求 !88
parents 41d5b8db 22b2990f
%%% outline
%-------------------------------------------------------------------------
\begin{tikzpicture}
\begin{scope}
\node [anchor=west] (s1) at (0,0) {$\mathbf{s}$ = 在\ \ 桌子\ \ };
\node [anchor=west] (t1) at ([yshift=-2em]s1.west) {$\mathbf{t}$ = on\ \ the\ \ table};
\draw [->,double,thick,ublue] ([yshift=0.2em]s1.south) -- ([yshift=-0.8em]s1.south);
\end{scope}
\begin{scope}[xshift=1.5in]
\node [anchor=west] (s2) at (0,0) {$\mathbf{s}$ = 在\ \ 桌子\ \ };
\node [anchor=west] (t2) at ([yshift=-2em]s2.west) {$\mathbf{t}'$ = table \ on\ \ the};
\draw [->,double,thick,ublue] ([yshift=0.2em]s2.south) -- ([yshift=-0.8em]s2.south);
\end{scope}
\node [anchor=north] (score11) at ([yshift=-2.0em]s1.south) {$\textrm{P}(\mathbf{s}|\mathbf{t})$};
\node [anchor=north] (score12) at ([yshift=-2.0em]s2.south) {$\textrm{P}(\mathbf{s}|\mathbf{t}')$};
\node [anchor=west] (comp1) at ([xshift=2.3em]score11.east) {\large{$\mathbf{=}$}};
\node [anchor=east] (label1) at ([xshift=-1em,yshift=0.1em]score11.west) {{IBM模型1:}};
{
\node [anchor=north] (score21) at ([yshift=0.2em]score11.south) {$\textrm{P}(\mathbf{s}|\mathbf{t})$};
\node [anchor=north] (score22) at ([yshift=0.2em]score12.south) {$\textrm{P}(\mathbf{s}|\mathbf{t}')$};
\node [anchor=west] (comp2) at ([xshift=2.3em]score21.east) {\large{$\mathbf{>}$}};
\node [anchor=east] (label2) at ([xshift=-1em,yshift=0.1em]score21.west) {{理想:}};
}
\end{tikzpicture}
%---------------------------------------------------------------------
\definecolor{ublue}{rgb}{0.152,0.250,0.545}
\definecolor{ugreen}{rgb}{0,0.5,0}
%%% outline
%-------------------------------------------------------------------------
%%% 简易机器翻译系统 - step 3 decoding - example
\begin{tikzpicture}
\begin{scope}[scale=0.4]
{\footnotesize
\node [anchor=west,draw,thick,minimum width=2.8em, minimum height=2.0em,fill=green!30,drop shadow](num1) at (0,0) {C};
\node [anchor=north,circle,draw,thick,minimum width=2.0em,fill=red!30,drop shadow](num1-1) at ([yshift=-5.0em]num1.south) {};
\draw [->,very thick,ublue]([yshift=-0.2em]num1.south) -- ([yshift=0.2em]num1-1.north);
%%%%%%%%%%%%%%%%%%%%%%%%%%
\node [anchor=west,draw,thick,minimum width=2.8em, minimum height=2.0em,fill=green!30,drop shadow](num2) at ([xshift=5.2em]num1.east) {B};
\node [anchor=north,circle,draw,thick,minimum width=2.0em,fill=red!30,drop shadow](num2-1) at ([yshift=-5.0em]num2.south) {};
\draw [->,very thick]([xshift=0.2em]num1.east) -- ([xshift=-0.2em]num2.west);
\draw [->,very thick,ublue]([yshift=-0.2em]num2.south) -- ([yshift=0.2em]num2-1.north);
%%%%%%%%%%%%%%%%%%%%%%%%%%
\node [anchor=west,draw,thick,minimum width=2.8em, minimum height=2.0em,fill=green!30,drop shadow](num3) at ([xshift=5.2em]num2.east) {A};
\node [anchor=north,circle,draw,thick,minimum width=2.0em,fill=red!30,drop shadow](num3-1) at ([yshift=-5.0em]num3.south) {};
\draw [->,very thick]([xshift=0.2em]num2.east) -- ([xshift=-0.2em]num3.west);
\draw [->,very thick,ublue]([yshift=-0.2em]num3.south) -- ([yshift=0.2em]num3-1.north);
%%%%%%%%%%%%%%%%%%%%%%%%%%
\node [anchor=west,draw,thick,minimum width=2.8em, minimum height=2.0em,fill=green!30,drop shadow](num4) at ([xshift=5.2em]num3.east) {B};
\node [anchor=north,circle,draw,thick,minimum width=2.0em,fill=red!30,drop shadow](num4-1) at ([yshift=-5.0em]num4.south) {};
\draw [->,very thick]([xshift=0.2em]num3.east) -- ([xshift=-0.2em]num4.west);
\draw [->,very thick,ublue]([yshift=-0.2em]num4.south) -- ([yshift=0.2em]num4-1.north);
%%%%%%%%%%%%%%%%%%%%%%%%%%
\node [anchor=west,draw,thick,minimum width=2.8em, minimum height=2.0em,fill=green!30,drop shadow](num5) at ([xshift=5.2em]num4.east) {C};
\node [anchor=north,circle,draw,thick,minimum width=2.0em,fill=red!30,drop shadow](num5-1) at ([yshift=-5.0em]num5.south) {};
\draw [->,very thick]([xshift=0.2em]num4.east) -- ([xshift=-0.2em]num5.west);
\draw [->,very thick,ublue]([yshift=-0.2em]num5.south) -- ([yshift=0.2em]num5-1.north);
%%%%%%%%%%%%%%%%%%%%%%%%%%
\node [anchor=west,draw,thick,minimum width=2.8em, minimum height=2.0em,fill=green!30,drop shadow](num6) at ([xshift=5.2em]num5.east) {A};
\node [anchor=north,circle,draw,thick,minimum width=2.0em,fill=red!30,drop shadow](num6-1) at ([yshift=-5.0em]num6.south) {};
\draw [->,very thick]([xshift=0.2em]num5.east) -- ([xshift=-0.2em]num6.west);
\draw [->,very thick,ublue]([yshift=-0.2em]num6.south) -- ([yshift=0.2em]num6-1.north);
\node [anchor=north](word1) at ([xshift=2.5em,yshift=-3.0em]num1-1.south) {图示说明:};
\node [anchor=north,draw,thick,minimum width=2.8em, minimum height=2.0em,fill=green!30,drop shadow](word2) at ([xshift=-2.5em,yshift=-3.0em]word1.south) {C};
\node [anchor=west](word2-2) at ([xshift=1.5em]word2.east) {一个隐含状态};
\node [anchor=north,circle,draw,thick,minimum width=2.0em,fill=red!30,drop shadow](word3) at ([xshift=-2.5em,yshift=-12.2em]word1.south) {};
\node [anchor=west](word3-2) at ([xshift=2.1em]word3.east) {一个可见状态};
\draw [->,very thick]([xshift=6.4em]word2-2.east) -- ([xshift=11.6em]word2-2.east);
\node [anchor=west](word4) at ([xshift=13.1em]word2-2.east) {从一个隐含状态到下一个};
\node [anchor=west](word4-1) at ([xshift=13.1em,yshift=-4.0em]word2-2.east) {隐含状态的转换};
\draw [->,very thick,ublue]([xshift=30.7em,yshift=-0.2em]word3.north) -- ([xshift=30.7em,yshift=0.2em]word3.south);
\node [anchor=west](word5) at ([xshift=13.1em,yshift=-9.5em]word2-2.east) {从一个隐含状态到可见状};
\node [anchor=west](word5-1) at ([xshift=13.1em,yshift=-13.5em]word2-2.east) {态的输出};
}
\end{scope}
\end{tikzpicture}
%%% outline
%-------------------------------------------------------------------------
\begin{tikzpicture}
\begin{scope}
\node [anchor=west] (s1) at (0,0) {\footnotesize{$s_1$}:我};
\node [anchor=west] (s2) at ([xshift=0.5em]s1.east) {\footnotesize{$s_2$}:对};
\node [anchor=west] (s3) at ([xshift=0.5em]s2.east) {\footnotesize{$s_3$}:你};
\node [anchor=west] (s4) at ([xshift=0.5em]s3.east) {\footnotesize{$s_4$}:感到};
\node [anchor=west] (s5) at ([xshift=0.5em]s4.east) {\footnotesize{$s_5$}:满意};
\end{scope}
\begin{scope}[yshift=-3.0em]
\node [anchor=west] (t1) at (0.35em,0) {\footnotesize{$t_1$}:I};
\node [anchor=west] (t2) at ([xshift=1.0em,yshift=0.0em]t1.east) {\footnotesize{$t_2$}:am};
\node [anchor=west] (t3) at ([xshift=0.3em,yshift=0.0em]t2.east) {\footnotesize{$t_3$}:satisfied};
\node [anchor=west] (t4) at ([xshift=0.3em]t3.east) {\footnotesize{$t_4$}:with};
\node [anchor=west] (t5) at ([xshift=0.3em,yshift=-0.0em]t4.east) {\footnotesize{$t_5$}:you};
\end{scope}
\draw [-,thick,ublue,dashed] (s1.south) -- (t1.north);
\draw [-,thick,ublue,dashed] (s4.south) -- ([yshift=0.3em]t2.north);
\draw [-,thick,ublue,dashed] (s2.south) ..controls +(south:1em) and +(north:1em).. (t4.north);
\draw [-,thick,ublue,dashed] (s3.south) ..controls +(south:0.5em) and +(north:1.5em).. (t5.north);
\draw [-,thick,ublue,dashed] (s5.south) -- (t3.north);
\end{tikzpicture}
%---------------------------------------------------------------------
...@@ -26,7 +26,7 @@ ...@@ -26,7 +26,7 @@
\parinterval 使用概率化的方法对翻译问题进行建模是机器翻译发展中的重要里程碑。这种思想也影响了当今的统计机器翻译和神经机器翻译方法。虽然技术不断发展,传统的统计模型已经不再``新鲜'',但它对于今天机器翻译的研究仍然有着重要的启示作用。在了解前沿、展望未来的同时,我们更要冷静的思考前人给我们带来了什么。基于此,这里将介绍统计机器翻译的开山之作\ \dash \ IBM 模型,它提出了使用统计模型进行翻译的思想,并在建模中引入了单词对齐这一重要概念。 \parinterval 使用概率化的方法对翻译问题进行建模是机器翻译发展中的重要里程碑。这种思想也影响了当今的统计机器翻译和神经机器翻译方法。虽然技术不断发展,传统的统计模型已经不再``新鲜'',但它对于今天机器翻译的研究仍然有着重要的启示作用。在了解前沿、展望未来的同时,我们更要冷静的思考前人给我们带来了什么。基于此,这里将介绍统计机器翻译的开山之作\ \dash \ IBM 模型,它提出了使用统计模型进行翻译的思想,并在建模中引入了单词对齐这一重要概念。
IBM模型由Peter F. Brown等人于上世纪九十年代初提出\cite{Peter1993The}。客观的说,这项工作的视野和对问题的理解,已经超过当时很多人所能看到的东西,其衍生出来的一系列方法和新的问题还被后人花费将近10年的时间来进行研究与讨论。时至今日,IBM模型中的一些思想仍然影响着很多研究工作。本章将重点介绍一种简单的基于单词的统计翻译模型(IBM模型1),以及在这种建模方式下的模型训练方法。 IBM模型由Peter F. Brown等人于上世纪九十年代初提出\cite{DBLP:journals/coling/BrownPPM94}。客观的说,这项工作的视野和对问题的理解,已经超过当时很多人所能看到的东西,其衍生出来的一系列方法和新的问题还被后人花费将近10年的时间来进行研究与讨论。时至今日,IBM模型中的一些思想仍然影响着很多研究工作。本章将重点介绍一种简单的基于单词的统计翻译模型(IBM模型1),以及在这种建模方式下的模型训练方法。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
...@@ -223,7 +223,7 @@ IBM模型由Peter F. Brown等人于上世纪九十年代初提出\cite{Peter1993 ...@@ -223,7 +223,7 @@ IBM模型由Peter F. Brown等人于上世纪九十年代初提出\cite{Peter1993
\subsubsection{如何从一个双语平行数据中学习?} \subsubsection{如何从一个双语平行数据中学习?}
\parinterval 假设有一定数量的双语对照的平行数据,是否可以从中自动获得两种语言单词之间的翻译概率呢?回忆一下{\color{red}{第二章}}中的掷骰子游戏,其中使用了相对频度估计方法来自动获得骰子不同面出现概率的估计值。其中,重复投掷骰子很多次,然后统计``1''到``6''各面出现的次数,再除以投掷的总次数,最后得到它们出现的概率的极大似然估计。这里,可以使用类似的方式计算单词翻译概率。但是,现在有的是句子一级对齐的数据,并不知道两种语言之间单词的对应关系。也就是,要从句子级对齐的平行数据中学习单词之间对齐的概率。这里,需要使用稍微``复杂''一些的模型来描述这个问题。 \parinterval 假设有一定数量的双语对照的平行数据,是否可以从中自动获得两种语言单词之间的翻译概率呢?回忆一下{\chaptertwo}中的掷骰子游戏,其中使用了相对频度估计方法来自动获得骰子不同面出现概率的估计值。其中,重复投掷骰子很多次,然后统计``1''到``6''各面出现的次数,再除以投掷的总次数,最后得到它们出现的概率的极大似然估计。这里,可以使用类似的方式计算单词翻译概率。但是,现在有的是句子一级对齐的数据,并不知道两种语言之间单词的对应关系。也就是,要从句子级对齐的平行数据中学习单词之间对齐的概率。这里,需要使用稍微``复杂''一些的模型来描述这个问题。
$X$$Y$分别表示源语言和目标语言的词汇表。对于任意源语言单词$x \in X$,所有的目标语单词$y \in Y$都可能是它的译文。给定一个互译的句对$(\mathbf{s},\mathbf{t})$,可以把$\textrm{P}(x \leftrightarrow y; \mathbf{s}, \mathbf{t})$定义为:在观测到$(\mathbf{s},\mathbf{t})$的前提下$x$$y$互译的概率。其中$x$是属于句子$\mathbf{s}$中的词,而$y$是属于句子$\mathbf{t}$ 中的词。$\textrm{P}(x \leftrightarrow y; \mathbf{s},\mathbf{t})$的计算公式描述如下: $X$$Y$分别表示源语言和目标语言的词汇表。对于任意源语言单词$x \in X$,所有的目标语单词$y \in Y$都可能是它的译文。给定一个互译的句对$(\mathbf{s},\mathbf{t})$,可以把$\textrm{P}(x \leftrightarrow y; \mathbf{s}, \mathbf{t})$定义为:在观测到$(\mathbf{s},\mathbf{t})$的前提下$x$$y$互译的概率。其中$x$是属于句子$\mathbf{s}$中的词,而$y$是属于句子$\mathbf{t}$ 中的词。$\textrm{P}(x \leftrightarrow y; \mathbf{s},\mathbf{t})$的计算公式描述如下:
\vspace{-0.5em} \vspace{-0.5em}
...@@ -259,7 +259,7 @@ $\mathbf{t}$ = machine\; {\color{red}translation}\; is\; a\; process\; of\; gene ...@@ -259,7 +259,7 @@ $\mathbf{t}$ = machine\; {\color{red}translation}\; is\; a\; process\; of\; gene
\label{eq:5-3} \label{eq:5-3}
\end{eqnarray} \end{eqnarray}
\noindent 注意,由于``look''没有出现在数据中,因此$\textrm{P}(\text{``机器''},\text{``look''}; \mathbf{s},\mathbf{t})=0$。这时,可以使用{\color{red}{第二章}}介绍的平滑算法赋予它一个非零的值,以保证在后续的步骤中整个翻译模型不会出现零概率的情况。 \noindent 注意,由于``look''没有出现在数据中,因此$\textrm{P}(\text{``机器''},\text{``look''}; \mathbf{s},\mathbf{t})=0$。这时,可以使用{\chaptertwo}介绍的平滑算法赋予它一个非零的值,以保证在后续的步骤中整个翻译模型不会出现零概率的情况。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION % NEW SUBSUB-SECTION
...@@ -345,7 +345,7 @@ $\mathbf{t}^{[2]}$ = So\; ,\; what\; is\; human\; {\color{red}translation}\; ? ...@@ -345,7 +345,7 @@ $\mathbf{t}^{[2]}$ = So\; ,\; what\; is\; human\; {\color{red}translation}\; ?
\parinterval 当然,这里最核心的问题还是函数$g(\mathbf{s},\mathbf{t})$的定义。而第二个问题其实不需要解决,因为机器翻译只关注于可能性最大的翻译结果,即$g(\mathbf{s},\mathbf{t})$的计算结果最大时对应的译文。这个问题会在后面进行讨论。 \parinterval 当然,这里最核心的问题还是函数$g(\mathbf{s},\mathbf{t})$的定义。而第二个问题其实不需要解决,因为机器翻译只关注于可能性最大的翻译结果,即$g(\mathbf{s},\mathbf{t})$的计算结果最大时对应的译文。这个问题会在后面进行讨论。
\parinterval 回到设计$g(\mathbf{s},\mathbf{t})$的问题上。这里,采用``大题小作''的方法,这个技巧在{\color{red}{第二章}}已经进行了充分的介绍。具体来说,直接建模句子之间的对应比较困难,但可以利用单词之间的对应来描述句子之间的对应关系。这就用到了上一小节所介绍的单词翻译概率。 \parinterval 回到设计$g(\mathbf{s},\mathbf{t})$的问题上。这里,采用``大题小作''的方法,这个技巧在{\chaptertwo}已经进行了充分的介绍。具体来说,直接建模句子之间的对应比较困难,但可以利用单词之间的对应来描述句子之间的对应关系。这就用到了上一小节所介绍的单词翻译概率。
\parinterval 首先引入一个非常重要的概念\ \dash \ {\small\sffamily\bfseries{词对齐}}\index{词对齐}(Word Alignment)\index{Word Alignment},它是统计机器翻译中最核心的概念之一。词对齐描述了平行句对中单词之间的对应关系,它体现了一种观点:本质上句子之间的对应是由单词之间的对应表示的。当然,这个观点在神经机器翻译或者其他模型中可能会有不同的理解,但是翻译句子的过程中考虑词级的对应关系是符合我们对语言的认知的。图\ref{fig:5-7} 展示了一个句对$\mathbf{s}$$\mathbf{t}$,单词的右下标数字表示了该词在句中的位置,而虚线表示的是句子$\mathbf{s}$$\mathbf{t}$中的词对齐关系。比如,``满意''的右下标数字5表示在句子$\mathbf{s}$中处于第5个位置,``satisfied''的右下标数字3表示在句子$\mathbf{t}$中处于第3个位置,``满意''和``satisfied''之间的虚线表示两个单词之间是对齐的。为方便描述,用二元组$(j,i)$ 来描述词对齐,它表示源语言句子的第$j$个单词对应目标语言句子的第$i$个单词,即单词$s_j$$t_i$对应。通常,也会把$(j,i)$称作一条{\small\sffamily\bfseries{词对齐连接}}\index{词对齐连接}。图\ref{fig:5-7} 中共有5 条虚线,表示有5组单词之间的词对齐连接。可以把这些词对齐连接构成的集合作为词对齐的一种表示,记为$A$,即$A={\{(1,1),(2,4),(3,5),(4,2)(5,3)}\}$ \parinterval 首先引入一个非常重要的概念\ \dash \ {\small\sffamily\bfseries{词对齐}}\index{词对齐}(Word Alignment)\index{Word Alignment},它是统计机器翻译中最核心的概念之一。词对齐描述了平行句对中单词之间的对应关系,它体现了一种观点:本质上句子之间的对应是由单词之间的对应表示的。当然,这个观点在神经机器翻译或者其他模型中可能会有不同的理解,但是翻译句子的过程中考虑词级的对应关系是符合我们对语言的认知的。图\ref{fig:5-7} 展示了一个句对$\mathbf{s}$$\mathbf{t}$,单词的右下标数字表示了该词在句中的位置,而虚线表示的是句子$\mathbf{s}$$\mathbf{t}$中的词对齐关系。比如,``满意''的右下标数字5表示在句子$\mathbf{s}$中处于第5个位置,``satisfied''的右下标数字3表示在句子$\mathbf{t}$中处于第3个位置,``满意''和``satisfied''之间的虚线表示两个单词之间是对齐的。为方便描述,用二元组$(j,i)$ 来描述词对齐,它表示源语言句子的第$j$个单词对应目标语言句子的第$i$个单词,即单词$s_j$$t_i$对应。通常,也会把$(j,i)$称作一条{\small\sffamily\bfseries{词对齐连接}}\index{词对齐连接}。图\ref{fig:5-7} 中共有5 条虚线,表示有5组单词之间的词对齐连接。可以把这些词对齐连接构成的集合作为词对齐的一种表示,记为$A$,即$A={\{(1,1),(2,4),(3,5),(4,2)(5,3)}\}$
...@@ -393,14 +393,14 @@ g(\mathbf{s},\mathbf{t}) = \prod_{(j,i)\in \widehat{A}}\textrm{P}(s_j,t_i) ...@@ -393,14 +393,14 @@ g(\mathbf{s},\mathbf{t}) = \prod_{(j,i)\in \widehat{A}}\textrm{P}(s_j,t_i)
\parinterval 如何在$g(\mathbf{s},\mathbf{t})$引入词序信息呢?我们希望函数$g(\mathbf{s},\mathbf{t})$对符合自然语言表达习惯的翻译结果给出更高的分数,对于不符合的或不通顺的句子给出更低的分数。这里很自然想到使用语言模型,因为语言模型可以度量一个句子出现的可能性。流畅的句子语言模型得分越高,反之越低。 \parinterval 如何在$g(\mathbf{s},\mathbf{t})$引入词序信息呢?我们希望函数$g(\mathbf{s},\mathbf{t})$对符合自然语言表达习惯的翻译结果给出更高的分数,对于不符合的或不通顺的句子给出更低的分数。这里很自然想到使用语言模型,因为语言模型可以度量一个句子出现的可能性。流畅的句子语言模型得分越高,反之越低。
\parinterval 这里可以使用{\color{red}{第二章}}介绍的$n$-gram语言模型,它也是统计机器翻译中确保流畅翻译结果的重要手段之一。$n$-gram语言模型用概率化方法描述了句子的生成过程。以2-gram语言模型为例,可以使用如下公式计算一个词串的概率: \parinterval 这里可以使用{\chaptertwo}介绍的$n$-gram语言模型,它也是统计机器翻译中确保流畅翻译结果的重要手段之一。$n$-gram语言模型用概率化方法描述了句子的生成过程。以2-gram语言模型为例,可以使用如下公式计算一个词串的概率:
\begin{eqnarray} \begin{eqnarray}
\textrm{P}_{\textrm{lm}}(\mathbf{t}) & = & \textrm{P}_{\textrm{lm}}(t_1...t_l) \nonumber \\ \textrm{P}_{\textrm{lm}}(\mathbf{t}) & = & \textrm{P}_{\textrm{lm}}(t_1...t_l) \nonumber \\
& = & \textrm{P}(t_1)\times \textrm{P}(t_2|t_1)\times \textrm{P}(t_3|t_2)\times ... \times \textrm{P}(t_l|t_{l-1}) & = & \textrm{P}(t_1)\times \textrm{P}(t_2|t_1)\times \textrm{P}(t_3|t_2)\times ... \times \textrm{P}(t_l|t_{l-1})
\label{eq:5-9} \label{eq:5-9}
\end{eqnarray} \end{eqnarray}
\noindent 其中,$\mathbf{t}=t_1...t_l$表示由$l$个单词组成的句子,$\textrm{P}_{\textrm{lm}}(\mathbf{t})$表示语言模型给句子$\mathbf{t}$的打分。具体而言,$\textrm{P}_{\textrm{lm}}(\mathbf{t})$被定义为$\textrm{P}(t_i|t_{i-1})(i=1,2,...,l)$的连乘\footnote{为了确保数学表达的准确性,这书中定义$\textrm{P}(t_1|t_0) \equiv \textrm{P}(t_1)$},其中$\textrm{P}(t_i|t_{i-1})(i=1,2,...,l)$表示前面一个单词为$t_{i-1}$时,当前单词为$t_i$的概率。语言模型的训练方法可以参看{\color{red}{第二章}}相关内容。 \noindent 其中,$\mathbf{t}=t_1...t_l$表示由$l$个单词组成的句子,$\textrm{P}_{\textrm{lm}}(\mathbf{t})$表示语言模型给句子$\mathbf{t}$的打分。具体而言,$\textrm{P}_{\textrm{lm}}(\mathbf{t})$被定义为$\textrm{P}(t_i|t_{i-1})(i=1,2,...,l)$的连乘\footnote{为了确保数学表达的准确性,这书中定义$\textrm{P}(t_1|t_0) \equiv \textrm{P}(t_1)$},其中$\textrm{P}(t_i|t_{i-1})(i=1,2,...,l)$表示前面一个单词为$t_{i-1}$时,当前单词为$t_i$的概率。语言模型的训练方法可以参看{\chaptertwo}相关内容。
\parinterval 回到建模问题上来。既然语言模型可以帮助系统度量每个译文的流畅度,那么可以使用它对翻译进行打分。一种简单的方法是把语言模型$\textrm{P}_{\textrm{lm}}{(\mathbf{t})}$ 和公式\ref{eq:5-7}中的$g(\mathbf{s},\mathbf{t})$相乘,这样就得到了一个新的$g(\mathbf{s},\mathbf{t})$,它同时考虑了翻译准确性($\prod_{j,i \in \widehat{A}}{\textrm{P}(s_j,t_i)}$)和流畅度($\textrm{P}_{\textrm{lm}}(\mathbf{t})$): \parinterval 回到建模问题上来。既然语言模型可以帮助系统度量每个译文的流畅度,那么可以使用它对翻译进行打分。一种简单的方法是把语言模型$\textrm{P}_{\textrm{lm}}{(\mathbf{t})}$ 和公式\ref{eq:5-7}中的$g(\mathbf{s},\mathbf{t})$相乘,这样就得到了一个新的$g(\mathbf{s},\mathbf{t})$,它同时考虑了翻译准确性($\prod_{j,i \in \widehat{A}}{\textrm{P}(s_j,t_i)}$)和流畅度($\textrm{P}_{\textrm{lm}}(\mathbf{t})$):
\begin{eqnarray} \begin{eqnarray}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论