Commit 178a1ae7 by 孟霞

合并分支 'master' 到 'mengxia'

Master

查看合并请求 !1020
parents 928d470e 93046333
......@@ -43,7 +43,7 @@
\node [anchor=west,mnode] (n8) at ([xshift=5em,yshift=0em]n7.east) {};
\node [anchor=north,align=center,font=\footnotesize] (n81) at ([xshift=0em,yshift=-0.2em]n8.north) {{\small 符号合并表}\\(e,s)};
\node [anchor=west,align=left,font=\footnotesize] (nt3) at ([xshift=0.1em,yshift=0em]n6.east) {统计二元组\\[0.5ex]的频次};
\node [anchor=west,align=left,font=\footnotesize] (nt3) at ([xshift=0.1em,yshift=0em]n6.east) {统计二元组\\[0.5ex]出现的频次};
\node [anchor=west,align=left,font=\footnotesize] (nt4) at ([xshift=0em,yshift=-0.4em]n7.east) {频次最高的\\[0.5ex](e,s)加入表\\};
\draw [->,thick,ublue] ([xshift=0em,yshift=0em]n6.east)--([xshift=0em,yshift=0em]n7.west);
\draw [->,thick,ublue] ([xshift=0em,yshift=0em]n7.east)--([xshift=0em,yshift=0em]n8.west);
......@@ -63,7 +63,7 @@
\node [anchor=west,mnode] (n11) at ([xshift=5em,yshift=0em]n10.east) {};
\node [anchor=north,align=center,font=\footnotesize] (n111) at ([xshift=0em,yshift=-0.2em]n11.north) {{\small 符号合并表}\\(e,s)\\(es,t)};
\node [anchor=west,align=left,font=\footnotesize] (nt5) at ([xshift=0.1em,yshift=0em]n9.east) {统计二元组\\[0.5ex]的频次};
\node [anchor=west,align=left,font=\footnotesize] (nt5) at ([xshift=0.1em,yshift=0em]n9.east) {统计二元组\\[0.5ex]出现的频次};
\node [anchor=west,align=left,font=\footnotesize] (nt6) at ([xshift=0em,yshift=-0.4em]n10.east) {频次最高的\\[0.5ex](es,t)加入表\\};
\draw [->,thick,ublue] ([xshift=0em,yshift=0em]n9.east)--([xshift=0em,yshift=0em]n10.west);
\draw [->,thick,ublue] ([xshift=0em,yshift=0em]n10.east)--([xshift=0em,yshift=0em]n11.west);
......@@ -72,7 +72,7 @@
\node [anchor=north,ublue] (cd) at ([xshift=0em,yshift=-2.0em]n10.south) {$\cdots$};
\draw [->,thick,ublue] ([xshift=-0em,yshift=-0em]n11.south) .. controls +(south:2em) and +(north:2em) .. ([xshift=-0em,yshift=-0em]cd.north);
\node [anchor=north west,ublue,font=\footnotesize,align=left] (l2) at ([xshift=1em,yshift=-1.0em]n10.south east) {在词表中\\[0.8ex]合并(es,t)};
\node [anchor=east,ublue,align=left,font=\footnotesize] (l3) at ([xshift=-0.5em,yshift=0em]cd.west) {直至达到设定的符号合\\并表大小或无法合并};
\node [anchor=east,ublue,align=left,font=\footnotesize] (l3) at ([xshift=-0.5em,yshift=0em]cd.west) {直至达到预设的符号合并表\\大小,或没有二元组可以被\\合并};
\begin{pgfonlayer}{background}
\node [rectangle,inner sep=0.7em,draw,orange!40,dashed,thick,rounded corners=7pt] [fit = (n5) (n8) (l3) (cd)] (box2) {};
......
......@@ -14,7 +14,7 @@
\node [neuronnode] (neuron_z) at (1.2 * \nodespace,-1.5 * \neuronsep) {\scriptsize{$z_{i}^{l+1}$}};
\node [neuronnode] (neuron_y') at (2.4 * \nodespace,-1.5 * \neuronsep) {\scriptsize{$x_{i}^{l+1}$}};
\node [anchor=north] (standard) at ([yshift=-4em]neuron_z.south) {\scriptsize{标准网络}};
\node [anchor=north,align=left,font=\scriptsize] (standard) at ([xshift=2em,yshift=-3em]neuron_z.south) {使用Dropout前的\\一层神经网络};
\node [] (standard) at ([xshift=-1em]neuron_z.west) {\scriptsize{$\mathbi{w}_{i}^{l}$}};
\node [] (standard) at ([xshift=0.6em,yshift=0.3em]neuron_z.east) {\scriptsize{$f$}};
......@@ -40,7 +40,7 @@
\node [neuronnode] (drop_neuron_r2) at (4.4*\nodespace,-1.5*\neuronsep) {\scriptsize{$r_{2}^{l}$}};
\node [neuronnode] (drop_neuron_r1) at (4.4*\nodespace,-2.5*\neuronsep) {\scriptsize{$r_{1}^{l}$}};
\node [anchor=north] (standard) at ([xshift=2em,yshift=-4em]drop_neuron_z.south) {\scriptsize{应用Dropout后的网络}};
\node [anchor=north,align=left,font=\scriptsize] (standard) at ([xshift=2em,yshift=-3em]drop_neuron_z.south) {使用Dropout后的\\一层神经网络};
\node [] (standard) at ([xshift=-1em]drop_neuron_z.west) {\scriptsize{$\mathbi{w}_{i}^{l}$}};
\node [] (standard) at ([xshift=0.6em,yshift=0.3em]drop_neuron_z.east) {\scriptsize{$f$}};
%structure
......@@ -63,7 +63,7 @@
\node [anchor=north west,inner sep = 2pt] (line2) at (line1.south west) {$z_{i}^{l+1}=\mathbi{w}^{l} \mathbi{x}^{l} + b^{l}$};
\node [anchor=north west,inner sep = 2pt] (line3) at (line2.south west) {$x_{i}^{l+1}=f\left(z_{i}^{l+1}\right)$};
\node [anchor=north west,inner sep = 2pt] (line4) at (line3.south west) {应用Dropout:};
\node [anchor=north west,inner sep = 2pt] (line5) at (line4.south west) {$r_{j}^{l} \sim$ Bernoulli $(1-p)$};
\node [anchor=north west,inner sep = 2pt] (line5) at (line4.south west) {$r_{i}^{l} \sim$ Bernoulli $(1-p)$};
\node [anchor=north west,inner sep = 2pt] (line6) at (line5.south west) {$\tilde{\mathbi{x}}=\mathbi{r} * \mathbi{x}$};
\node [anchor=north west,inner sep = 2pt] (line7) at (line6.south west) {$z_{i}^{l+1}=\mathbi{w}^{l} \widetilde{\mathbi{x}}^{l} + b^{l}$};
\node [anchor=north west,inner sep = 2pt] (line8) at (line7.south west) {$x_{i}^{l+1}=f\left(z_{i}^{l+1}\right)$};
......
......@@ -19,7 +19,7 @@
\node[unit,fill=red!30] at (0,\d) (conv_\x) {卷积$1 \times 1$:2048};
\foreach \x/\d in {1/12em}
\node[unit,fill=blue!30] at (0,\d) (relu_\x) {RELU};
\node[unit,fill=blue!30] at (0,\d) (relu_\x) {ReLU};
\draw[->,thick] ([yshift=-1.4em]ln_1.-90) -- ([yshift=-0.1em]ln_1.-90);
\draw[->,thick] ([yshift=0.1em]ln_1.90) -- ([yshift=-0.1em]sa_1.-90);
......@@ -52,8 +52,8 @@
\node[unit,fill=red!30] at (0,4em) (glu_1) {门控线性单元:512};
\node[unit,fill=red!30] at (-3em,10em) (conv_1) {卷积$1 \times 1$:2048};
\node[unit,fill=cyan!30] at (3em,10em) (conv_2) {卷积$3 \times 1$:256};
\node[unit,fill=blue!30] at (-3em,12em) (relu_1) {RELU};
\node[unit,fill=blue!30] at (3em,12em) (relu_2) {RELU};
\node[unit,fill=blue!30] at (-3em,12em) (relu_1) {ReLU};
\node[unit,fill=blue!30] at (3em,12em) (relu_2) {ReLU};
\node[unit,fill=cyan!30] at (0em,18em) (conv_3) {Sep卷积$9 \times 1$:256};
......
......@@ -41,7 +41,7 @@
\node[anchor=south,cnode,fill=white] (cl1) at ([xshift=-4em,yshift=1.5em]m1.south){};
\node[anchor=north,cnode,fill=white] (cl2) at ([xshift=0em,yshift=-1em]m1.north){};
\node[anchor=south west,wnode,align=left,font=\tiny] (wl7) at ([xshift=0.5em,yshift=0em]cl1.east){使用{\color{ugreen}\bfnew{特征}}{\color{blue}\bfnew{数据}}\\中信息进行提取};
\node[anchor=south west,wnode,align=right,font=\tiny] (wl7) at ([xshift=0.5em,yshift=-1em]cl1.east){使用{\color{ugreen}\bfnew{特征}}{\color{blue}\bfnew{数据}}\\中的信息进行\\提取};
\node[anchor=west,wnode,align=right,font=\tiny] (wl8) at ([xshift=0.5em,yshift=0em]cl2.east){使用提取的信息对\\{\color{red!50}\bfnew{模型}}中的参数\\进行训练};
\draw [-,thick,dashed] ([xshift=0em,yshift=0em]ml1.west) -- ([xshift=0em,yshift=0em]ml1.east);
......@@ -65,7 +65,7 @@
\node[anchor=south,cnode,fill=white] (cc1) at ([xshift=-4em,yshift=1.5em]m2.south){};
\node[anchor=north,cnode,fill=white] (cc2) at ([xshift=0em,yshift=-1em]m2.north){};
\node[anchor=south west,wnode,align=left,font=\tiny] (wl7) at ([xshift=0.5em,yshift=0em]cc1.east){使用{\color{red!50} \bfnew{模型}}{\color{blue} \bfnew{数据}}\\中信息进行提取};
\node[anchor=south west,wnode,align=right,font=\tiny] (wl7) at ([xshift=0.5em,yshift=-0.5em]cc1.east){使用{\color{red!50} \bfnew{模型}}{\color{blue} \bfnew{数据}}\\中的信息进行\\提取};
\node[anchor=west,wnode,align=right,font=\tiny] (wl8) at ([xshift=0.5em,yshift=0em]cc2.east){使用提取的信息对\\{\color{red!50} \bfnew{模型}}中的参数\\进行训练};
\draw [-,thick,dashed] ([xshift=0em,yshift=0em]mc1.west) -- ([xshift=0em,yshift=0em]mc1.east);
......
......@@ -31,7 +31,7 @@
\addplot[blue,line width=1.25pt] coordinates {(2.9706,2) (3.1706,1.79) (3.3706,1.63) (3.4656,1.572) (3.6706,1.4602) (3.7136,1.44)};
\addplot[blue,dashed,line width=1.25pt] coordinates {(3.7136,1.44) (3.7136,2)};
\addplot[blue,line width=1.25pt] coordinates {(3.7136,2) (3.9136,1.79) (4.1136,1.63) (4.2086,1.572) (4.4136,1.4602) (4.4566,1.44) (4.7000,1.3574) (5.0000,1.2531)};
\addlegendentry{\scriptsize 调整后的学习率}
\addlegendentry{\scriptsize 重置后的学习率}
\end{axis}
}
......
......@@ -4,8 +4,8 @@
\begin{tikzpicture}
\tikzstyle{node}=[minimum height=6em,inner sep=4pt,align=left,draw,font=\footnotesize,rounded corners=4pt,thick,drop shadow]
\node[node,fill=orange!30] (n1) at (0,0){\scriptsize\bfnew{超网络} \\ [1ex] 模型结构参数 \\[0.4ex] 网络参数};
\node[anchor=west,node,fill=yellow!30] (n2) at ([xshift=4em]n1.east){\scriptsize\bfnew{优化后的超网络} \\ [1ex]模型{\color{red}结构参数}(已优化) \\ [0.4ex]网络参数(已优化)};
\node[node,fill=orange!30] (n1) at (0,0){\scriptsize\bfnew{超网络} \\ [1ex] 模型结构参数 \\[0.4ex] 网络参数};
\node[anchor=west,node,fill=yellow!30] (n2) at ([xshift=4em]n1.east){\scriptsize\bfnew{优化后的超网络} \\ [1ex]模型{\color{red}结构参数}(已优化) \\ [0.4ex]网络参数(已优化)};
\node[anchor=west,node,fill=red!30] (n3) at ([xshift=6em]n2.east){\scriptsize\bfnew{找到的模型结构}};
\draw[-latex,thick] (n1.0) -- node[above,align=center,font=\scriptsize]{优化后的\\超网络}(n2.180);
......
......@@ -48,6 +48,9 @@
\node [anchor=north,rotate=90] (n2) at (5.4cm,1cm) {\scriptsize 训练集\ PPL};
\node [anchor=north,rotate=90] (n3) at (4.2cm,1cm) {\scriptsize 校验集\ PPL};
\node [anchor=north,rotate=90] (n4) at (10.7cm,1cm) {\scriptsize 校验集\ PPL};
\node [anchor=north] (label1) at (1.6cm,-1.2cm) {\small (a)浅层模型};
\node [anchor=north] (label2) at (8.4cm,-1.2cm) {\small (b)深层模型};
\end{tikzpicture}
%---------------------------------------------------------------------
\ No newline at end of file
......@@ -125,13 +125,13 @@
\parinterval 交互式机器翻译系统主要通过用户的反馈来提升译文的质量,不同类型的反馈信息则影响着系统最终的性能。根据反馈形式的不同,可以将交互式机器翻译分为以下几种:
\begin{itemize}
\vspace{0.5em}
\item 基于前缀的交互式机器翻译。早期的交互式机器翻译系统都是采用基于前缀的方式。基于翻译系统生成的初始译文,翻译人员从左到右检查翻译的正确性,并在第一个错误的位置进行更正。这为系统提供了一种双重信号:表明该位置上的单词必须是翻译人员修改过后的单词,并且该位置之前的单词都是正确的。之后系统根据已经检查过的前缀再生成后面的译文\upcite{DBLP:conf/acl/WuebkerGDHL16,Zens2003EfficientSF,DBLP:journals/coling/BarrachinaBCCCKLNTVV09,DBLP:journals/csl/PerisC19}
\item 基于前缀的交互式机器翻译。早期的交互式机器翻译系统都是采用基于前缀的方式。翻译人员使用翻译系统生成的初始译文,从左到右检查翻译的正确性,并在第一个错误的位置进行更正。这为系统提供了一种双重信号:表明该位置上的单词必须是翻译人员修改过后的单词,并且该位置之前的单词都是正确的。之后系统根据已经检查过的前缀再生成后面的译文\upcite{DBLP:conf/acl/WuebkerGDHL16,Zens2003EfficientSF,DBLP:journals/coling/BarrachinaBCCCKLNTVV09,DBLP:journals/csl/PerisC19}
\vspace{0.5em}
\item 基于片段的交互式机器翻译。根据用户提供的反馈来生成更好的翻译结果是交互式翻译系统的关键。而基于前缀的系统则存在一个严重的缺陷,当翻译系统获得确定的翻译前缀之后,再重新生成译文时会将原本正确的翻译后缀遗漏了,因此会引入新的错误。在基于片段的交互式机器翻译系统中,翻译人员除了纠正第一个错误的单词,还可以指定在未来迭代中保留的单词序列。之后系统根据这些反馈信号再生成新的译文\upcite{Peris2017InteractiveNM,DBLP:journals/mt/DomingoPC17}
\vspace{0.5em}
\item 基于评分的交互式机器翻译。随着计算机算力的提升,有时会出现“机器等人”的现象,因此需要提升人参与交互的效率也是需要考虑的。与之前的系统不同,基于评分的交互式机器翻译系统不需要翻译人员选择、纠正或删除某个片段,而是使用翻译人员对译文的评分来强化机器翻译的学习\upcite{DBLP:journals/corr/abs-1805-01553,DBLP:conf/emnlp/NguyenDB17}
\item 基于评分的交互式机器翻译。随着计算机算力的提升,有时会出现“机器等人”的现象,因此提升人参与交互的效率也是需要考虑的。与之前的系统不同,基于评分的交互式机器翻译系统不需要翻译人员选择、纠正或删除某个片段,而是使用翻译人员对译文的评分来强化机器翻译的学习\upcite{DBLP:journals/corr/abs-1805-01553,DBLP:conf/emnlp/NguyenDB17}
\vspace{0.5em}
\end{itemize}
......@@ -264,7 +264,7 @@
\item {\small\bfnew{视频字幕翻译}}。随着互联网的普及,人们可以通过互联网接触到大量境外影视作品。由于人们可能没有相应的外语能力,通常需要翻译人员对字幕进行翻译。因此,这些境外视频的传播受限于字幕翻译的速度和准确度。现在的一些视频网站在使用语音识别为视频生成源语言字幕的同时,通过机器翻译技术为各种语言的受众提供质量尚可的目标语言字幕,这种方式为人们提供了极大的便利。
\item {\small\bfnew{社交}}。社交是人们的重要社会活动。人们可以通过各种各样的社交软件做到即时通讯,进行协作或者分享自己的观点。然而受限于语言问题,人们的社交范围往往不会超出自己所掌握的语种范围,很难方便地进行跨语言社交。随着机器翻译技术的发展,越来越多的社交软件开始支持自动翻译,用户可以轻易地将各种语言的内容翻译成自己的母语,方便了人们的交流,让语言问题不再成为社交的障碍。
\item {\small\bfnew{社交}}。社交是人们的重要社会活动。人们可以通过各种各样的社交软件做到即时通讯,进行协作或者分享自己的观点。然而受限于语言问题,人们的社交范围往往不会超出自己所掌握的语种范围,因此很难方便地进行跨语言社交。随着机器翻译技术的发展,越来越多的社交软件开始支持自动翻译,用户可以轻易地将各种语言的内容翻译成自己的母语,方便了人们的交流,让语言问题不再成为社交的障碍。
\item {\small\bfnew{同声传译}}。在一些国际会议中,与会者来自许多不同的国家,为了保证会议的流畅,通常需要专业翻译人员进行同声传译。同声传译需要在不打断演讲的同时,不间断地将讲话内容进行口译,对翻译人员的要求极高。现在,一些会议开始采用语音识别来将语音转换成文本,同时使用机器翻译技术进行翻译的方式,达到同步翻译的目的。这项技术已经得到了多个企业的关注,并在很多重要会议上进行尝试,取得了很好的反响。不过同声传译达到可以真正使用的程度还需一定时间的打磨,特别是会议场景下,准确进行语音识别和翻译仍然具有挑战性。
......
......@@ -49,7 +49,7 @@
\parinterval 除了翻译品质维度以外,机器翻译还可以从以下三个维度来讨论:语种维度、领域维度和应用模式维度。关于语种维度,机器翻译技术应该为全球用户服务,提供所有国家至少一种官方语言到其他国家语言的自动互译功能。该维度面临的最大问题是双语数据稀缺。关于领域维度,通用领域翻译系统的翻译能力,对于垂直领域数据来说是不足的。最典型的问题是不能恰当地翻译垂直领域术语,计算机不能无中生有。比较直接可行的解决方案至少有两个,一是引入垂直领域术语双语词典来改善机器翻译效果;二是收集加工一定规模的垂直领域双语句对来优化翻译模型。这两种工程方法虽然简单,但效果不错,并且两者结合对于翻译模型性能的提升帮助更大。但很多时候垂直领域双语句对的收集代价太高,可行性低,因此垂直领域翻译问题本质上就转换成为垂直领域资源稀缺问题和领域自适应学习问题。除此之外,小样本学习、迁移学习等机器学习技术也被一些研究人员用来解决垂直领域翻译问题。关于应用模式维度,可以从下面几个方面进行讨论:
\begin{itemize}
\item 通常,机器翻译的典型应用包括在线翻译公有云服务,用户接入非常简单,只需要联网使用浏览器就可以自由免费使用。在某些行业,用户对数据翻译安全性和保密性的要求非常高,其中可能还会涉及个性化定制,这是在线翻译公有云服务无法满足的,于是,在本地部署机器翻译私有云离线机器翻译技术和服务成了新的应用模式。在本地部署私有云的问题在于:需要用户自己购买 GPU 服务器并建机房,对硬件的投入高。也许将来机器翻译领域会出现新的应用模式:类似服务托管模式的在线私有云或专有云,以及混合云服务(公有云、私有云和专有云的混合体)。
\item 通常,机器翻译的典型应用包括在线翻译公有云服务,用户接入非常简单,只需要联网使用浏览器就可以自由免费使用。在某些行业,用户对数据翻译安全性和保密性的要求非常高,其中可能还会涉及个性化定制,这是在线翻译公有云服务无法满足的,于是,在本地部署机器翻译私有云,应用离线机器翻译技术和服务成了新的应用模式。在本地部署私有云的问题在于:需要用户自己购买 GPU 服务器并建机房,对硬件的投入高。也许将来机器翻译领域会出现新的应用模式:类似服务托管模式的在线私有云或专有云,以及混合云服务(公有云、私有云和专有云的混合体)。
\item 离线机器翻译技术可以为更小型的智能翻译终端设备提供服务,如大家熟知的翻译机、翻译笔、翻译耳机等智能翻译设备。在不联网的情况下,这些设备能实现高品质机器翻译功能,这类应用模式具有很大的潜力。但这类应用模式需要解决的问题也很多:首先是模型大小、翻译速度和翻译品质的问题;其次,考虑不同操作系统(如Linux、Android Q 和iOS)和不同架构(如x86、MIPS、ARM 等)的CPU 芯片的智能适配兼容问题。将来,离线翻译系统还可以通过芯片安装到办公设备上,如传真机、打印机和复印机等,辅助人们实现支持多语言的智能办公。目前,人工智能芯片发展的速度非常快,而机器翻译芯片研发面临的最大问题是缺少应用场景和上下游的应用支撑,一旦时机成熟,机器翻译芯片的研发和应用也有可能会爆发。
......@@ -57,7 +57,7 @@
\begin{itemize}
\item 文档解析技术可以帮助实现Word文档翻译、PDF文档翻译、WPS 文档翻译、邮件翻译等更多格式文档自动翻译的目标,也可以作为插件嵌入到各种办公平台中,成为智能办公好助手。
\item 语音识别与机器翻译是绝配,语音翻译用途广泛,比如翻译机、语音翻译APP和会议AI同传应用。但目前最大的问题主要体现在两个方面,一是很多实际应用场景中语音识别效果欠佳,造成错误蔓延,导致机器翻译结果不够理想;二是就算小语种的语音识别效果很好,但资源稀缺型小语种翻译性能不够好。
\item 语音识别与机器翻译是绝配,语音翻译用途广泛,比如翻译机、语音翻译APP和会议AI同传应用。但目前存在一些问题,比如很多实际应用场景中语音识别效果欠佳,造成错误蔓延,导致机器翻译结果不够理想;另外就算小语种的语音识别效果很好,但资源稀缺型小语种翻译性能不够好,最终的语音翻译效果就不会好。
\item OCR技术可以帮助实现扫描笔和翻译笔的应用、出国旅游的拍照翻译功能,将来还可以与穿戴式设备相结合,比如智能眼镜等等。视频字幕翻译能够帮助我们欣赏没有中文字幕的国外电影和电视节目,比如到达任何一个国家,打开电视都能够看到中文字幕,也是非常酷的应用。
\end{itemize}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论