Commit 21d3ed48 by xiaotong

bug fixes

parent 8cb6c7e3
...@@ -58,8 +58,7 @@ ...@@ -58,8 +58,7 @@
\parinterval 自注意力机制也可以被看做是一个序列表示模型。比如,对于每个目标位置$j$,都生成一个与之对应的源语句子表示,它的形式为: \parinterval 自注意力机制也可以被看做是一个序列表示模型。比如,对于每个目标位置$j$,都生成一个与之对应的源语句子表示,它的形式为:
\begin{eqnarray} \begin{eqnarray}
\mathbi{C}}_j = \sum_i \alpha_{i,j}\vectorn{\emph{h}}_i \mathbi{C}_j & = & \sum_i \alpha_{i,j}\vectorn{\emph{h}}_i \label{eq:12-4201}
\label{eq:12-4201}
\end{eqnarray} \end{eqnarray}
\noindent 其中,$\vectorn{\emph{h}}_i$ 为源语句子每个位置的表示结果,$\alpha_{i,j}$是目标位置$j$$\vectorn{\emph{h}}_i$的注意力权重。而自注意力机制不仅可以处理两种语言句子之间的对应,它也可以对单语句子进行表示。以源语句子为例,自注意力机制将序列中每个位置的表示$\vectorn{\emph{h}}_i$看作$\mathrm{query}$(查询),并且将所有位置的表示看作$\mathrm{key}$(键)和$\mathrm{value}$ (值)。自注意力模型通过计算当前位置与所有位置的匹配程度,也就是在注意力机制中提到的注意力权重,来对各个位置的$\mathrm{value}$进行加权求和。得到的结果可以被看作是在这个句子中当前位置的抽象表示。这个过程,可以叠加多次,形成多层注意力模型,对输入序列中各个位置进行更深层的表示。 \noindent 其中,$\vectorn{\emph{h}}_i$ 为源语句子每个位置的表示结果,$\alpha_{i,j}$是目标位置$j$$\vectorn{\emph{h}}_i$的注意力权重。而自注意力机制不仅可以处理两种语言句子之间的对应,它也可以对单语句子进行表示。以源语句子为例,自注意力机制将序列中每个位置的表示$\vectorn{\emph{h}}_i$看作$\mathrm{query}$(查询),并且将所有位置的表示看作$\mathrm{key}$(键)和$\mathrm{value}$ (值)。自注意力模型通过计算当前位置与所有位置的匹配程度,也就是在注意力机制中提到的注意力权重,来对各个位置的$\mathrm{value}$进行加权求和。得到的结果可以被看作是在这个句子中当前位置的抽象表示。这个过程,可以叠加多次,形成多层注意力模型,对输入序列中各个位置进行更深层的表示。
...@@ -561,7 +560,7 @@ Transformer Deep(48层) & 30.2 & 43.1 & 194$\times 10^ ...@@ -561,7 +560,7 @@ Transformer Deep(48层) & 30.2 & 43.1 & 194$\times 10^
\section{推断} \section{推断}
\parinterval Transformer解码器生成译文词序列的过程和其它神经机器翻译系统类似,都是从左往右生成,且下一个单词的预测依赖已经生成的单词。其具体推断过程如图\ref{fig:12-56}所示,其中$\mathbi{C}}_i$是编码-解码注意力的结果,解码器首先根据“<eos>”和$\mathbi{C}}_1$生成第一个单词“how”,然后根据“how”和$\mathbi{C}}_2$生成第二个单词“are”,以此类推,当解码器生成“<eos>”时结束推断。 \parinterval Transformer解码器生成译文词序列的过程和其它神经机器翻译系统类似,都是从左往右生成,且下一个单词的预测依赖已经生成的单词。其具体推断过程如图\ref{fig:12-56}所示,其中$\mathbi{C}_i$是编码-解码注意力的结果,解码器首先根据“<eos>”和$\mathbi{C}_1$生成第一个单词“how”,然后根据“how”和$\mathbi{C}_2$生成第二个单词“are”,以此类推,当解码器生成“<eos>”时结束推断。
\parinterval 但是,Transformer在推断阶段无法对所有位置进行并行化操作,因为对于每一个目标语单词都需要对前面所有单词进行注意力操作,因此它推断速度非常慢。可以采用的加速手段有:低精度\upcite{DBLP:journals/corr/CourbariauxB16}、Cache(缓存需要重复计算的变量)\upcite{DBLP:journals/corr/abs-1805-00631}、共享注意力网络等\upcite{Xiao2019SharingAW}。关于Transformer模型的推断加速方法将会在{\chapterfourteen}进一步深入讨论。 \parinterval 但是,Transformer在推断阶段无法对所有位置进行并行化操作,因为对于每一个目标语单词都需要对前面所有单词进行注意力操作,因此它推断速度非常慢。可以采用的加速手段有:低精度\upcite{DBLP:journals/corr/CourbariauxB16}、Cache(缓存需要重复计算的变量)\upcite{DBLP:journals/corr/abs-1805-00631}、共享注意力网络等\upcite{Xiao2019SharingAW}。关于Transformer模型的推断加速方法将会在{\chapterfourteen}进一步深入讨论。
......
...@@ -8,7 +8,7 @@ ...@@ -8,7 +8,7 @@
\node [rectangle,inner sep=0.4em,draw,fill=blue!20!white] [fit = (e) (c)] (box) {}; \node [rectangle,inner sep=0.4em,draw,fill=blue!20!white] [fit = (e) (c)] (box) {};
\end{pgfonlayer} \end{pgfonlayer}
\draw [->,thick] ([yshift=-1em]box.south)--([yshift=-0.1em]box.south) node [pos=0,below] (bottom1) {\small{单词$w$one-hot表示}}; \draw [->,thick] ([yshift=-1em]box.south)--([yshift=-0.1em]box.south) node [pos=0,below] (bottom1) {\small{单词$w$One-hot表示}};
\draw [->,thick] ([yshift=0.1em]box.north)--([yshift=1em]box.north) node [pos=1,above] (top1) {\scriptsize{$\mathbi{e}$=(8,.2,-1,.9,...,1)}}; \draw [->,thick] ([yshift=0.1em]box.north)--([yshift=1em]box.north) node [pos=1,above] (top1) {\scriptsize{$\mathbi{e}$=(8,.2,-1,.9,...,1)}};
\node [anchor=north] (bottom2) at ([yshift=0.3em]bottom1.south) {\scriptsize{$\mathbi{o}$=(0,0,1,0,...,0)}}; \node [anchor=north] (bottom2) at ([yshift=0.3em]bottom1.south) {\scriptsize{$\mathbi{o}$=(0,0,1,0,...,0)}};
\node [anchor=south] (top2) at ([yshift=-0.3em]top1.north) {\small{单词$w$的分布式表示}}; \node [anchor=south] (top2) at ([yshift=-0.3em]top1.north) {\small{单词$w$的分布式表示}};
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论