Commit 2ef067af by zengxin

10 12 index去重

parent 11c814da
......@@ -459,9 +459,9 @@ NMT & 21.7 & 18.7 & -13.7 \\
\vspace{-0.5em}
\begin{itemize}
\vspace{0.5em}
\item 如何对$\seq{{x}}$$\seq{{y}}_{<j }$进行分布式表示,即{\small\sffamily\bfseries{词嵌入}}\index{词嵌入}(Word Embedding)\index{Word Embedding}。首先,将由one-hot向量表示的源语言单词,即由0和1构成的离散化向量表示,转化为实数向量。可以把这个过程记为$\textrm{e}_x (\cdot)$。类似的,可以把目标语言序列$\seq{{y}}_{<j }$中的每个单词用同样的方式进行表示,记为$\textrm{e}_y (\cdot)$
\item 如何对$\seq{{x}}$$\seq{{y}}_{<j }$进行分布式表示,即{\small\sffamily\bfseries{词嵌入}}(Word Embedding)。首先,将由one-hot向量表示的源语言单词,即由0和1构成的离散化向量表示,转化为实数向量。可以把这个过程记为$\textrm{e}_x (\cdot)$。类似的,可以把目标语言序列$\seq{{y}}_{<j }$中的每个单词用同样的方式进行表示,记为$\textrm{e}_y (\cdot)$
\vspace{0.5em}
\item 如何在词嵌入的基础上获取整个序列的表示,即句子的{\small\sffamily\bfseries{表示学习}}\index{表示学习}(Representation Learning)\index{Representation Learning}。可以把词嵌入的序列作为循环神经网络的输入,循环神经网络最后一个时刻的输出向量便是整个句子的表示结果。如图\ref{fig:10-11}中,编码器最后一个循环单元的输出$\vectorn{\emph{h}}_m$被看作是一种包含了源语言句子信息的表示结果,记为$\vectorn{\emph{C}}$
\item 如何在词嵌入的基础上获取整个序列的表示,即句子的{\small\sffamily\bfseries{表示学习}}(Representation Learning)。可以把词嵌入的序列作为循环神经网络的输入,循环神经网络最后一个时刻的输出向量便是整个句子的表示结果。如图\ref{fig:10-11}中,编码器最后一个循环单元的输出$\vectorn{\emph{h}}_m$被看作是一种包含了源语言句子信息的表示结果,记为$\vectorn{\emph{C}}$
\vspace{0.5em}
\item 如何得到每个目标语言单词的概率,即译文单词的{\small\sffamily\bfseries{生成}}\index{生成}(Generation)\index{Generation}。与神经语言模型一样,可以用一个Softmax输出层来获取当前时刻所有单词的分布,即利用Softmax 函数计算目标语言词表中每个单词的概率。令目标语言序列$j$时刻的循环神经网络的输出向量(或状态)为$\vectorn{\emph{s}}_j$。根据循环神经网络的性质,$ y_j$ 的生成只依赖前一个状态$\vectorn{\emph{s}}_{j-1}$和当前时刻的输入(即词嵌入$\textrm{e}_y (y_{j-1})$)。同时考虑源语言信息$\vectorn{\emph{C}}$$\funp{P}(y_j | \seq{{y}}_{<j},\seq{{x}})$可以被重新定义为:
\begin{eqnarray}
......@@ -1081,7 +1081,7 @@ L(\vectorn{\emph{Y}},\widehat{\vectorn{\emph{Y}}}) = \sum_{j=1}^n L_{\textrm{ce}
\begin{itemize}
\vspace{0.5em}
\item {\small\bfnew{数据并行}}\index{数据并行}。如果一台设备能完整放下一个神经机器翻译模型,那么数据并行可以把一个大批次均匀切分成$n$个小批次,然后分发到$n$个设备上并行计算,最后把结果汇总,相当于把运算时间变为原来的${1}/{n}$,数据并行的过程如图\ref{fig:10-30}所示。不过,需要注意的是,多设备并行需要对数据在不同设备间传输,特别是多个GPU的情况,设备间传输的带宽十分有限,设备间传输数据往往会造成额外的时间消耗\upcite{xiao2017fast}。通常,数据并行的训练速度无法随着设备数量增加呈线性增长。不过这个问题也有很多优秀的解决方案,比如采用多个设备的异步训练,但是这些内容已经超出本章的内容,因此这里不做过多讨论。
\item {\small\bfnew{数据并行}}。如果一台设备能完整放下一个神经机器翻译模型,那么数据并行可以把一个大批次均匀切分成$n$个小批次,然后分发到$n$个设备上并行计算,最后把结果汇总,相当于把运算时间变为原来的${1}/{n}$,数据并行的过程如图\ref{fig:10-30}所示。不过,需要注意的是,多设备并行需要对数据在不同设备间传输,特别是多个GPU的情况,设备间传输的带宽十分有限,设备间传输数据往往会造成额外的时间消耗\upcite{xiao2017fast}。通常,数据并行的训练速度无法随着设备数量增加呈线性增长。不过这个问题也有很多优秀的解决方案,比如采用多个设备的异步训练,但是这些内容已经超出本章的内容,因此这里不做过多讨论。
%----------------------------------------------
\begin{figure}[htp]
......
......@@ -163,7 +163,7 @@
\vspace{0.5em}
\item {\small\sffamily\bfseries{残差连接}}\index{残差连接}(Residual Connection,标记为“Add”)\index{Residual Connection}:对于自注意力子层和前馈神经网络子层,都有一个从输入直接到输出的额外连接,也就是一个跨子层的直连。残差连接可以使深层网络的信息传递更为有效;
\vspace{0.5em}
\item {\small\sffamily\bfseries{层正则化}}\index{层正则化}(Layer Normalization)\index{Layer Normalization}:自注意力子层和前馈神经网络子层进行最终输出之前,会对输出的向量进行层正则化,规范结果向量取值范围,这样易于后面进一步的处理。
\item {\small\sffamily\bfseries{层正则化}}\index{层正则化}(Layer Normalization):自注意力子层和前馈神经网络子层进行最终输出之前,会对输出的向量进行层正则化,规范结果向量取值范围,这样易于后面进一步的处理。
\vspace{0.5em}
\end{itemize}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论