\parinterval 利用矩阵$\mathbf a\in R^{m\times n}$,可以实现两个有限维欧氏空间的映射函数$f:R^n\rightarrow R^m$。例如$ n $维列向量$\mathbf x ^{\rm T}$与$ m\times n $的矩阵$\mathbf a $,向量$\mathbf x ^{\rm T}$左乘矩阵$\mathbf a $,可将向量$\mathbf x ^{\rm T}$映射为$ m $列向量,对于
\parinterval 利用矩阵$\mathbf a\in R^{m\times n}$,可以实现两个有限维欧氏空间的映射函数$f:R^n\rightarrow R^m$。例如$ n $维列向量$\mathbf x ^{\rm T}$与$ m\times n $的矩阵$\mathbf a $,向量$\mathbf x ^{\rm T}$左乘矩阵$\mathbf a $,可将向量$\mathbf x ^{\rm T}$映射为$ m $列向量。如下是一个具体的例子,
\parinterval 同样,人工神经元是人工神经网络的基本单元。在人们的想象中,人工神经元应该与生物神经元类似。但事实上,二者在形态上是有明显差别的。如图\ref{fig:5-4} 是一个典型的人工神经元,其本质是一个形似$ y=f(\mathbf x\cdot\mathbf w+b)$的函数。显而易见,一个神经元主要由$\mathbf x $,$\mathbf w $,$ b $,$ f $四个部分构成。其中$\mathbf x $是一个形如$(x_0,x_1,\dots,x_n)$ 的实数向量,在一个神经元中担任``输入''的角色。$\mathbf w $是一个权重矩阵,其中的每一个元素都对应着一个输入和一个输出,代表着``某输入对某输出的贡献程度'',通常也被理解为神经元连接的{\small\sffamily\bfseries{权重}}\index{权重}(weight)\index{weight}。$ b $被称作偏置,是一个实数。$ f $被称作激活函数,其本质是一个非线性函数。可见,一个人工神经元的功能是将输入向量与权重矩阵右乘(做内积)后,加上偏置量,经过一个非线性激活函数得到一个标量结果。
\parinterval 同样,人工神经元是人工神经网络的基本单元。在人们的想象中,人工神经元应该与生物神经元类似。但事实上,二者在形态上是有明显差别的。如图\ref{fig:5-4} 是一个典型的人工神经元,其本质是一个形似$ y=f(\mathbf x\cdot\mathbf w+b)$的函数。显而易见,一个神经元主要由$\mathbf x $,$\mathbf w $,$ b $,$ f $四个部分构成。其中$\mathbf x $是一个形如$(x_0,x_1,\dots,x_n)$ 的实数向量,在一个神经元中担任``输入''的角色。$\mathbf w $是一个权重矩阵,其中的每一个元素都对应着一个输入和一个输出,代表着``某输入对某输出的贡献程度'',通常也被理解为神经元连接的{\small\sffamily\bfseries{权重}}\index{权重}(weight)\index{weight}。$ b $被称作偏置,是一个实数。$ f $被称作激活函数,用于对输入向量各项加权和后进行某种变换。可见,一个人工神经元的功能是将输入向量与权重矩阵右乘(做内积)后,加上偏置量,经过一个非线性激活函数得到一个标量结果。