Commit 3933c7cb by 曹润柘

update 5-8

parent 8c3e7531
......@@ -649,7 +649,7 @@ g(\seq{s},\seq{t}) & \equiv & \prod_{j,i \in \widehat{A}}{\funp{P}(s_j,t_i)} \ti
\label{eq:5-18}
\end{eqnarray}
\parinterval 公式\eqref{eq:5-18}使用了简单的全概率公式把$\funp{P}(\seq{s}|\seq{t})$进行展开。通过访问$\seq{s}$$\seq{t}$之间所有可能的词对齐$\seq{a}$,并把对应的对齐概率进行求和,得到了$\seq{t}$$\seq{s}$的翻译概率。这里,可以把词对齐看作翻译的隐含变量,这样从$\seq{t}$$\seq{s}$的生成就变为从$\seq{t}$同时生成$\seq{s}$和隐含变量$\seq{a}$的问题。引入隐含变量是生成模型常用的手段,通过使用隐含变量,可以把较为困难的端到端学习问题转化为分步学习问题。
\parinterval 公式\eqref{eq:5-18}使用了简单的全概率公式把$\funp{P}(\seq{s}|\seq{t})$进行展开。通过访问$\seq{s}$$\seq{t}$之间所有可能的词对齐$\seq{a}$,并把对应的对齐概率进行求和,得到了$\seq{t}$$\seq{s}$的翻译概率。这里,可以把词对齐看作翻译的隐含变量,这样从$\seq{t}$$\seq{s}$的生成就变为从$\seq{t}$同时生成$\seq{s}$和隐含变量$\seq{a}$的问题。引入隐含变量是生成模型常用的手段,通过使用隐含变量,可以把较为困难的端到端学习问题转化为分步学习问题。
\parinterval 举个例子说明公式\eqref{eq:5-18}的实际意义。如图\ref{fig:5-17}所示,可以把从“谢谢\ 你”到“thank you”的翻译分解为9种可能的词对齐。因为源语言句子$\seq{s}$有2个词,目标语言句子$\seq{t}$加上空标记$t_0$共3个词,因此每个源语言单词有3个可能对齐的位置,整个句子共有$3\times3=9$种可能的词对齐。
......@@ -1093,7 +1093,7 @@ c_{\mathbb{E}}(s_u|t_v)&=&\sum\limits_{k=1}^{K} c_{\mathbb{E}}(s_u|t_v;s^{[k]},
\vspace{0.5em}
\item 在IBM基础模型之上,有很多改进的工作。例如,对空对齐、低频词进行额外处理\upcite{DBLP:conf/acl/Moore04};考虑源语言-目标语言和目标语言-源语言双向词对齐进行更好地词对齐对称化\upcite{肖桐1991面向统计机器翻译的重对齐方法研究};使用词典、命名实体等多种信息对模型进行改进\upcite{2005Improvin};通过引入短语增强IBM基础模型\upcite{1998Grammar};引入相邻单词对齐之间的依赖关系增加模型健壮性\upcite{DBLP:conf/acl-vlc/DaganCG93}等;也可以对IBM模型的正向和反向结果进行对称化处理,以得到更加准确词对齐结果\upcite{och2003systematic}
\item 随着词对齐概念的不断深入,也有很多词对齐方面的工作并不依赖IBM模型。比如,可以直接使用判别模型利用分类器解决词对齐问题\upcite{ittycheriah2005maximum};使用带参数控制的动态规划方法来提高词对齐准确率\upcite{DBLP:conf/naacl/GaleC91};甚至可以把对齐的思想用于短语和句法结构的双语对应\upcite{xiao2013unsupervised};无监督的对称词对齐方法,正向和反向模型联合训练,结合数据的相似性\upcite{DBLP:conf/naacl/LiangTK06};除了GIZA++,研究人员也开发了很多优秀的自动对齐工具,比如,FastAlign\upcite{DBLP:conf/naacl/DyerCS13}、Berkeley Word Aligner\upcite{taskar2005a}等,这些工具现在也有很广泛的应用。
\item 随着词对齐概念的不断深入,也有很多词对齐方面的工作并不依赖IBM模型。比如,可以直接使用判别模型利用分类器解决词对齐问题\upcite{ittycheriah2005maximum};使用带参数控制的动态规划方法来提高词对齐准确率\upcite{DBLP:conf/naacl/GaleC91};甚至可以把对齐的思想用于短语和句法结构的双语对应\upcite{xiao2013unsupervised};无监督的对称词对齐方法,正向和反向模型联合训练,结合数据的相似性\upcite{DBLP:conf/naacl/LiangTK06};除了GIZA++,研究人员也开发了很多优秀的自动对齐工具,比如,FastAlign\upcite{DBLP:conf/naacl/DyerCS13}、Berkeley Word Aligner\upcite{taskar2005a}等,这些工具现在也有很广泛的应用。
\vspace{0.5em}
\item 一种较为通用的词对齐评价标准是{\bfnew{对齐错误率}}(Alignment Error Rate, AER)\upcite{DBLP:journals/coling/FraserM07}。在此基础之上也可以对词对齐评价方法进行改进,以提高对齐质量与机器翻译评价得分BLEU的相关性\upcite{DBLP:conf/acl/DeNeroK07,paul2007all,黄书剑2009一种错误敏感的词对齐评价方法}。也有工作通过统计机器翻译系统性能的提升来评价对齐质量\upcite{DBLP:journals/coling/FraserM07}。不过,在相当长的时间内,词对齐质量对机器翻译系统的影响究竟如何并没有统一的结论。有些时候,词对齐的错误率下降了,但是机器翻译系统的译文品质却没有得到提升。但是,这个问题比较复杂,需要进一步的论证。不过,可以肯定的是,词对齐可以帮助人们分析机器翻译的行为。甚至在最新的神经机器翻译中,如何在神经网络模型中寻求两种语言单词之间的对应关系也是对模型进行解释的有效手段之一\upcite{DBLP:journals/corr/FengLLZ16}
......
......@@ -445,7 +445,7 @@ p_0+p_1 & = & 1 \label{eq:6-21}
\parinterval 在IBM模型中,$\funp{P}(\seq{t})\funp{P}(\seq{s}| \seq{t})$会随着目标语言句子长度的增加而减少,因为这种模型有多个概率化的因素组成,乘积项越多结果的值越小。这也就是说,IBM模型会更倾向选择长度短一些的目标语言句子。显然这种对短句子的偏向性并不是机器翻译所期望的。
\parinterval 这个问题在很多机器翻译系统中都存在。它实际上也是一种{\small\bfnew{系统偏置}}\index{系统偏置}(System Bias)\index{System Bias}的体现。为了消除这种偏置,可以通过在模型中增加一个短句子惩罚因子来抵消掉模型对短句子的倾向性。比如,可以定义一个惩罚因子,它的值随着长度的减少而增加。不过,简单引入这样的惩罚因子会导致模型并不符合一个严格的噪声信道模型。它对应一个基于判别框架的翻译模型,这部分内容会在{\chapterseven}进行介绍。
\parinterval 这个问题在很多机器翻译系统中都存在。它实际上也是一种{\small\bfnew{系统偏置}}\index{系统偏置}(System Bias)\index{System Bias}的体现。为了消除这种偏置,可以通过在模型中增加一个短句子惩罚因子来抵消掉模型对短句子的倾向性。比如,可以定义一个惩罚因子,它的值随着长度的减少而增加。不过,简单引入这样的惩罚因子会导致模型并不符合一个严格的噪声信道模型。它对应一个基于判别框架的翻译模型,这部分内容会在{\chapterseven}进行介绍。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......
......@@ -1313,7 +1313,7 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\subsection{句法翻译模型的特征}
\parinterval 基于语言学句法的翻译模型使用判别模型对翻译推导进行建模({\chapterseven}数学建模小节)。给定双语句对($\seq{s}$,$\seq{t}$),由$M$个特征经过线性加权,得到每个翻译推导$d$的得分,记为$\textrm{score(}d,\seq{t},\seq{s})=\sum_{i=1}^{M} \lambda_i \cdot h_{i}(d,\seq{t},\seq{s})$,其中$\lambda_i$表示特征权重,$h_{i}(d,\seq{t},\seq{s})$表示特征函数。翻译的目标就是要找到使$\textrm{score(}d,\seq{t},\seq{s})$达到最高的推导$d$
\parinterval 基于语言学句法的翻译模型使用判别模型对翻译推导进行建模({\chapterseven}数学建模小节)。给定双语句对($\seq{s}$,$\seq{t}$),由$M$个特征经过线性加权,得到每个翻译推导$d$的得分,记为$\textrm{score(}d,\seq{t},\seq{s})=\sum_{i=1}^{M} \lambda_i \cdot h_{i}(d,\seq{t},\seq{s})$,其中$\lambda_i$表示特征权重,$h_{i}(d,\seq{t},\seq{s})$表示特征函数。翻译的目标就是要找到使$\textrm{score(}d,\seq{t},\seq{s})$达到最高的推导$d$
\parinterval 这里,可以使用最小错误率训练对特征权重进行调优({\chapterseven}最小错误率训练小节)。而特征函数可参考如下定义:
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论